A B C D E F G H I J K L M N O P R S T U V W Y Z 

A

A - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
AAttributeValue<D> - Class in ai.libs.jaicore.ml.core.dataset.attribute
An abstract class for attribute values implementing basic functionality to store its value as well as getter and setters.
AAttributeValue(IAttributeType<D>) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.AAttributeValue
Constructor creating a new attribute value for a certain type.
AAttributeValue(IAttributeType<D>, D) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.AAttributeValue
Constructor creating a new attribute value for a certain type together with a value.
AbstractSplitBasedClassifierEvaluator<I,O> - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation
Connection between an Evaluator (e.g.
AbstractSplitBasedClassifierEvaluator(IMeasure<I, O>) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.AbstractSplitBasedClassifierEvaluator
 
add(SimpleInstance) - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
add(double[]) - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
add(Instance) - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
add(LabeledInstance<String>) - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
add(LabeledInstance<String>) - Method in class ai.libs.jaicore.ml.core.WekaCompatibleInstancesImpl
 
add(Instance) - Method in class ai.libs.jaicore.ml.SubInstances
 
add(int, Instance) - Method in class ai.libs.jaicore.ml.SubInstances
 
addAllFromJson(String) - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
addAllFromJson(JsonNode) - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
addAllFromJson(File) - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
addAllFromJson(String) - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
addAllFromJson(JsonNode) - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
addAllFromJson(File) - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
addAllFromJson(String) - Method in interface ai.libs.jaicore.ml.interfaces.Instances
 
addAllFromJson(File) - Method in interface ai.libs.jaicore.ml.interfaces.Instances
 
addAllFromJson(String) - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstances
 
addAllFromJson(File) - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstances
 
addChild(MCTreeNode) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
addChild(MCTreeNode) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
addChild(List<String>, Classifier) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
addChild(List<String>, Classifier) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
addInstruction(Instruction) - Method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
Adds a new Instruction to the history of these Instances
addResultEntry(int, double) - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentDatabase
 
addResultEntry(int, double) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
ADecomposableDoubleMeasure<I> - Class in ai.libs.jaicore.ml.core.evaluation.measure
A measure that is decomposable by instances and aggregated by averaging.
ADecomposableDoubleMeasure() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.ADecomposableDoubleMeasure
 
ADecomposableMeasure<I,O> - Class in ai.libs.jaicore.ml.core.evaluation.measure
A measure that is aggregated from e.g. instance-wise computations of the respective measure and which is then aggregated, e.g. taking the mean.
ADecomposableMeasure() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.ADecomposableMeasure
 
ADecomposableMultilabelMeasure - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
ADecomposableMultilabelMeasure() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.ADecomposableMultilabelMeasure
 
AFileSamplingAlgorithm - Class in ai.libs.jaicore.ml.core.dataset.sampling.infiles
An abstract class for file-based sampling algorithms providing basic functionality of an algorithm.
AFileSamplingAlgorithm(File) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.AFileSamplingAlgorithm
 
afterCreateRun(MLExperiment, int) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
ai.libs.jaicore.ml - package ai.libs.jaicore.ml
 
ai.libs.jaicore.ml.cache - package ai.libs.jaicore.ml.cache
Package to create ReproducibleInstances which can be stored and recreated if needed.
ai.libs.jaicore.ml.classification.multiclass - package ai.libs.jaicore.ml.classification.multiclass
 
ai.libs.jaicore.ml.classification.multiclass.reduction - package ai.libs.jaicore.ml.classification.multiclass.reduction
 
ai.libs.jaicore.ml.classification.multiclass.reduction.reducer - package ai.libs.jaicore.ml.classification.multiclass.reduction.reducer
 
ai.libs.jaicore.ml.classification.multiclass.reduction.splitters - package ai.libs.jaicore.ml.classification.multiclass.reduction.splitters
 
ai.libs.jaicore.ml.clustering - package ai.libs.jaicore.ml.clustering
 
ai.libs.jaicore.ml.core - package ai.libs.jaicore.ml.core
 
ai.libs.jaicore.ml.core.dataset - package ai.libs.jaicore.ml.core.dataset
This package contains the infrastructure for representing datasets and instances with different types of attributes.
ai.libs.jaicore.ml.core.dataset.attribute - package ai.libs.jaicore.ml.core.dataset.attribute
This package contains data structures for representing attributes of a dataset's instance.
ai.libs.jaicore.ml.core.dataset.attribute.categorical - package ai.libs.jaicore.ml.core.dataset.attribute.categorical
This package contains the implementation of a categorical attribute.
ai.libs.jaicore.ml.core.dataset.attribute.multivalue - package ai.libs.jaicore.ml.core.dataset.attribute.multivalue
This package contains the implementation of a multi-value attribute.
ai.libs.jaicore.ml.core.dataset.attribute.primitive - package ai.libs.jaicore.ml.core.dataset.attribute.primitive
This package contains the implementation of primitive data type attributes.
ai.libs.jaicore.ml.core.dataset.attribute.transformer - package ai.libs.jaicore.ml.core.dataset.attribute.transformer
 
ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue - package ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue
 
ai.libs.jaicore.ml.core.dataset.sampling - package ai.libs.jaicore.ml.core.dataset.sampling
This package contains algorithms for creating samples of a dataset.
ai.libs.jaicore.ml.core.dataset.sampling.infiles - package ai.libs.jaicore.ml.core.dataset.sampling.infiles
 
ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling - package ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling
 
ai.libs.jaicore.ml.core.dataset.sampling.inmemory - package ai.libs.jaicore.ml.core.dataset.sampling.inmemory
 
ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol - package ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol
 
ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories - package ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.interfaces - package ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.interfaces
 
ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling - package ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
 
ai.libs.jaicore.ml.core.dataset.standard - package ai.libs.jaicore.ml.core.dataset.standard
This package contains a straight-forward implementation of a dataset.
ai.libs.jaicore.ml.core.dataset.util - package ai.libs.jaicore.ml.core.dataset.util
 
ai.libs.jaicore.ml.core.dataset.weka - package ai.libs.jaicore.ml.core.dataset.weka
This package contains classes for weka-specific logics regarding the dataset.
ai.libs.jaicore.ml.core.evaluation.measure - package ai.libs.jaicore.ml.core.evaluation.measure
 
ai.libs.jaicore.ml.core.evaluation.measure.multilabel - package ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
ai.libs.jaicore.ml.core.evaluation.measure.singlelabel - package ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
 
ai.libs.jaicore.ml.core.exception - package ai.libs.jaicore.ml.core.exception
This package contains Exceptions defined by jaicore-ml.
ai.libs.jaicore.ml.core.predictivemodel - package ai.libs.jaicore.ml.core.predictivemodel
This package contains interfaces related to predictive models and learning algorithms.
ai.libs.jaicore.ml.evaluation - package ai.libs.jaicore.ml.evaluation
 
ai.libs.jaicore.ml.evaluation.evaluators.weka - package ai.libs.jaicore.ml.evaluation.evaluators.weka
 
ai.libs.jaicore.ml.evaluation.evaluators.weka.events - package ai.libs.jaicore.ml.evaluation.evaluators.weka.events
 
ai.libs.jaicore.ml.evaluation.evaluators.weka.factory - package ai.libs.jaicore.ml.evaluation.evaluators.weka.factory
 
ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation - package ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation
 
ai.libs.jaicore.ml.experiments - package ai.libs.jaicore.ml.experiments
 
ai.libs.jaicore.ml.interfaces - package ai.libs.jaicore.ml.interfaces
 
ai.libs.jaicore.ml.learningcurve.extrapolation - package ai.libs.jaicore.ml.learningcurve.extrapolation
 
ai.libs.jaicore.ml.learningcurve.extrapolation.client - package ai.libs.jaicore.ml.learningcurve.extrapolation.client
 
ai.libs.jaicore.ml.learningcurve.extrapolation.ipl - package ai.libs.jaicore.ml.learningcurve.extrapolation.ipl
 
ai.libs.jaicore.ml.learningcurve.extrapolation.lc - package ai.libs.jaicore.ml.learningcurve.extrapolation.lc
 
ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet - package ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet
 
ai.libs.jaicore.ml.metafeatures - package ai.libs.jaicore.ml.metafeatures
Provides means of computing meta features for a data set.
ai.libs.jaicore.ml.openml - package ai.libs.jaicore.ml.openml
 
ai.libs.jaicore.ml.scikitwrapper - package ai.libs.jaicore.ml.scikitwrapper
 
ai.libs.jaicore.ml.weka.dataset.splitter - package ai.libs.jaicore.ml.weka.dataset.splitter
 
ALGORITHMMODES - Static variable in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
ALGORITHMS - Static variable in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
AllPairsTable - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
AllPairsTable(Instances, Instances, Classifier) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.AllPairsTable
 
ALPHA - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
AnalyticalLearningCurve - Interface in ai.libs.jaicore.ml.interfaces
Added some analytical functions to a learning curve.
AProcessListener - Class in ai.libs.jaicore.ml.scikitwrapper
The process listener may be attached to a process in order to handle its ouputs streams in a controlled way.
AProcessListener() - Constructor for class ai.libs.jaicore.ml.scikitwrapper.AProcessListener
 
ArbitrarySplitter - Class in ai.libs.jaicore.ml.weka.dataset.splitter
Generates a purely random split of the dataset depending on the seed and on the portions provided.
ArbitrarySplitter() - Constructor for class ai.libs.jaicore.ml.weka.dataset.splitter.ArbitrarySplitter
 
ArffUtilities - Class in ai.libs.jaicore.ml.core.dataset
Utility class for handling Arff dataset files.
ASamplingAlgorithm - Class in ai.libs.jaicore.ml.core.dataset.sampling
An abstract class for sampling algorithms providing basic functionality of an algorithm.
ASamplingAlgorithm(IAlgorithmConfig, IDataset) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.ASamplingAlgorithm
 
ASamplingAlgorithm(IDataset) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.ASamplingAlgorithm
 
ASamplingAlgorithm<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
An abstract class for sampling algorithms providing basic functionality of an algorithm.
ASamplingAlgorithm(IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ASamplingAlgorithm
 
ASquaredErrorLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
Measure computing the squared error of two doubles.
ASquaredErrorLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.ASquaredErrorLoss
 
assignDatapoint(String) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.ClassStratiFileAssigner
 
assignDatapoint(String) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.IStratiFileAssigner
Select the suitable stratum for a datapoint and write it into the corresponding temporary file.
assignToStrati(IInstance) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
assignToStrati(IInstance) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.ClusterStratiAssigner
 
assignToStrati(IInstance) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.IStratiAssigner
Custom logic for assigning datapoints into strati.
associatedRunWithClassifier(int, Classifier) - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentDatabase
This method tells the logger the classifier object that is used for the run.
associatedRunWithClassifier(int, Classifier) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
AttributeBasedStratiAmountSelectorAndAssigner<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
This class is responsible for computing the amount of strati in attribute-based stratified sampling and assigning elements to the strati.
AttributeBasedStratiAmountSelectorAndAssigner() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
SCALE-54: Explicitly allow to not provide an attribute list
AttributeBasedStratiAmountSelectorAndAssigner(List<Integer>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
AttributeBasedStratiAmountSelectorAndAssigner(List<Integer>, DiscretizationHelper.DiscretizationStrategy, int) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
AttributeBasedStratiAmountSelectorAndAssigner(List<Integer>, Map<Integer, AttributeDiscretizationPolicy>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
AttributeDiscretizationPolicy - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
 
AttributeDiscretizationPolicy(List<Interval>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeDiscretizationPolicy
 
AutoMekaGGPFitness - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
AutoMekaGGPFitness() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.AutoMekaGGPFitness
 
AutoMEKAGGPFitnessMeasure - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
Fitness function for a linear combination of 4 well-known multi-label metrics: ExactMatch, Hamming, Rank and F1MacroAverageL.
AutoMEKAGGPFitnessMeasure() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.AutoMEKAGGPFitnessMeasure
 
AutoMEKAGGPFitnessMeasureLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
Measure combining exact match, hamming loss, f1macroavgL and rankloss.
AutoMEKAGGPFitnessMeasureLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.AutoMEKAGGPFitnessMeasureLoss
 

B

B - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
beforeCreateRun(MLExperiment) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
BETA - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
BooleanAttributeType - Class in ai.libs.jaicore.ml.core.dataset.attribute.primitive
The boolean attribute type.
BooleanAttributeType() - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.primitive.BooleanAttributeType
 
BooleanAttributeValue - Class in ai.libs.jaicore.ml.core.dataset.attribute.primitive
Numeric attribute value as it can be part of an instance.
BooleanAttributeValue(BooleanAttributeType) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.primitive.BooleanAttributeValue
Standard c'tor.
BooleanAttributeValue(BooleanAttributeType, Boolean) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.primitive.BooleanAttributeValue
C'tor setting the value of this attribute as well.
buildAttributeValue(Object) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeType
 
buildAttributeValue(String) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeType
 
buildAttributeValue(Object) - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.IAttributeType
Casts the value to the respective type and returns an attribute value with the creating attribute type as the referenced type.
buildAttributeValue(String) - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.IAttributeType
Builds an attribute value object from a string description.
buildAttributeValue(Object) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.multivalue.MultiValueAttributeType
 
buildAttributeValue(String) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.multivalue.MultiValueAttributeType
 
buildAttributeValue(Object) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.primitive.BooleanAttributeType
 
buildAttributeValue(String) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.primitive.BooleanAttributeType
 
buildAttributeValue(Object) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.primitive.NumericAttributeType
 
buildAttributeValue(String) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.primitive.NumericAttributeType
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.Ensemble
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ConstantClassifier
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.HighProbClassifier
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionOptimizer
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.RandomUniformClassifier
 
buildClassifier(Instances) - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 

C

C - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
cacheClassifier(String, EMCNodeType, Instances, Classifier) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ClassifierCache
 
cacheRetrievals - Static variable in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
calculateAvgMeasure(List<I>, List<I>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.ADecomposableDoubleMeasure
 
calculateAvgMeasure(List<I>, List<I>) - Method in interface ai.libs.jaicore.ml.core.evaluation.measure.IMeasure
Computes the measure for lists of input actual and the expected outcome expected and aggregates the measured values with the mean, as this is the most frequently used aggregate function.
calculateAvgMeasure(List<double[]>, List<double[]>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.AutoMEKAGGPFitnessMeasureLoss
 
calculateAvgMeasure(List<double[]>, List<double[]>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.F1MacroAverageL
 
calculateAvgMeasure(List<double[]>, List<double[]>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.HammingLoss
 
calculateAvgMeasure(List<double[]>, List<double[]>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.InstanceWiseF1
 
calculateAvgMeasure(List<double[]>, List<double[]>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.RankLoss
 
calculateAvgMeasure(List<Double>, List<Double>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.PrecisionAsLoss
 
calculateAvgMeasure(List<Double>, List<Double>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.RootMeanSquaredErrorLoss
 
calculateFinalInstanceBoundaries(Instances, Classifier) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.LocalCaseControlSampling
 
calculateFinalInstanceBoundaries(Instances, Classifier) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.OSMAC
 
calculateInstanceBoundaries(HashMap<Object, Integer>, int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlLikeSampling
 
calculateMeasure(List<I>, List<I>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.ADecomposableMeasure
 
calculateMeasure(List<I>, List<I>, IAggregateFunction<O>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.ADecomposableMeasure
 
calculateMeasure(I, I) - Method in interface ai.libs.jaicore.ml.core.evaluation.measure.IMeasure
Computes the measure for a measured input actual and the expected outcome expected.
calculateMeasure(List<I>, List<I>) - Method in interface ai.libs.jaicore.ml.core.evaluation.measure.IMeasure
Computes the measure for a lists of input actual and the expected outcome expected.
calculateMeasure(List<I>, List<I>, IAggregateFunction<O>) - Method in interface ai.libs.jaicore.ml.core.evaluation.measure.IMeasure
Computes the measure for lists of input actual and the expected outcome expected and aggregates the measured values with the given aggregation.
calculateMeasure(I, I) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.LossScoreTransformer
 
calculateMeasure(double[][], int[][]) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.AutoMekaGGPFitness
 
calculateMeasure(double[], double[]) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.AutoMEKAGGPFitnessMeasureLoss
 
calculateMeasure(double[], double[]) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.ExactMatchLoss
 
calculateMeasure(List<double[]>, List<double[]>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.F1MacroAverageL
 
calculateMeasure(double[], double[]) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.HammingLoss
 
calculateMeasure(double[], double[]) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.InstanceWiseF1
 
calculateMeasure(double[], double[]) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.JaccardScore
 
calculateMeasure(double[], double[]) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.RankLoss
 
calculateMeasure(Double, Double) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.ASquaredErrorLoss
 
calculateMeasure(Double, Double) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.MeanSquaredErrorLoss
 
calculateMeasure(Double, Double) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.PrecisionAsLoss
 
calculateMeasure(List<Double>, List<Double>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.PrecisionAsLoss
 
calculateMeasure(List<Double>, List<Double>, IAggregateFunction<Double>) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.PrecisionAsLoss
 
calculateMeasure(Double, Double) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.ZeroOneLoss
 
call() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.AFileSamplingAlgorithm
 
call() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ASamplingAlgorithm
 
cancel() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
cancel() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
CaseControlLikeSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol
 
CaseControlLikeSampling(IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlLikeSampling
 
CaseControlSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol
Case control sampling.
CaseControlSampling(Random, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlSampling
Constructor
CaseControlSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
CaseControlSamplingFactory() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.CaseControlSamplingFactory
 
CategoricalAttributeType - Class in ai.libs.jaicore.ml.core.dataset.attribute.categorical
The categorical attribute type describes the domain a value of a respective categorical attribute value stems from.
CategoricalAttributeType(List<String>) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeType
Constructor setting the domain of the categorical attribute values.
CategoricalAttributeValue - Class in ai.libs.jaicore.ml.core.dataset.attribute.categorical
Categorical attribute value as it can be part of an instance.
CategoricalAttributeValue(ICategoricalAttributeType) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeValue
Standard c'tor.
CategoricalAttributeValue(ICategoricalAttributeType, String) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeValue
C'tor setting the value of this attribute as well.
characterize(Instances) - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
 
characterizerNames - Variable in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
The names of the characterizers used
characterizers - Variable in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
The list of characterizers used in the computation of meta features
CheckedJaicoreMLException - Exception in ai.libs.jaicore.ml.core.exception
The CheckedJaicoreMLException serves as a base class for all checked Exceptions defined as part of jaicore-ml.
CheckedJaicoreMLException(String, Throwable) - Constructor for exception ai.libs.jaicore.ml.core.exception.CheckedJaicoreMLException
Creates a new CheckedJaicoreMLException with the given parameters.
CheckedJaicoreMLException(String) - Constructor for exception ai.libs.jaicore.ml.core.exception.CheckedJaicoreMLException
Creates a new CheckedJaicoreMLException with the given parameters.
ClassifierCache - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
ClassifierCache() - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.ClassifierCache
 
ClassifierEvaluatorConstructionFailedException - Exception in ai.libs.jaicore.ml.evaluation.evaluators.weka.factory
 
ClassifierEvaluatorConstructionFailedException(Exception) - Constructor for exception ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.ClassifierEvaluatorConstructionFailedException
 
ClassifierMetricGetter - Class in ai.libs.jaicore.ml.core.evaluation.measure
Class for getting metrics by their name for single- and multilabel classifiers.
ClassifierWeightedSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol
The idea behind this Sampling method is to weight instances depended on the way a pilot estimator p classified them.
ClassifierWeightedSampling(Random, Instances, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.ClassifierWeightedSampling
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.Ensemble
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ConstantClassifier
 
classifyInstance(Instance) - Method in interface ai.libs.jaicore.ml.classification.multiclass.reduction.ITreeClassifier
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.HighProbClassifier
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionOptimizer
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.RandomUniformClassifier
 
classifyInstance(Instance) - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
classifyInstances(Instances) - Method in interface ai.libs.jaicore.ml.evaluation.IInstancesClassifier
 
classifyInstances(Instances) - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
ClassStratiFileAssigner - Class in ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling
 
ClassStratiFileAssigner(int) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.ClassStratiFileAssigner
Constructor with a given target attribute.
ClassStratiFileAssigner() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.ClassStratiFileAssigner
Constructor without a given target attribute.
cleanUp() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.AFileSamplingAlgorithm
Implement custom clean up behaviour.
cleanUp() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.ReservoirSampling
 
cleanUp() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.StratifiedFileSampling
 
cleanUp() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.SystematicFileSampling
 
clearCache() - Static method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
clone() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ConstantClassifier
 
clone() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
cloneClassifier(Classifier) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
cluster() - Method in class ai.libs.jaicore.ml.clustering.GMeans
 
clusterResults - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
clusters - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.ClusterStratiAssigner
 
ClusterSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
 
ClusterSampling(long, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
ClusterSampling(long, DistanceMeasure, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
ClusterStratiAssigner<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
 
ClusterStratiAssigner() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.ClusterStratiAssigner
 
COMMAND_NAME - Static variable in class ai.libs.jaicore.ml.cache.FoldBasedSubsetInstruction
Constant string to identify this instruction.
COMMAND_NAME - Static variable in class ai.libs.jaicore.ml.cache.LoadDataSetInstruction
Constant String to Identify this Instruction
COMMAND_NAME - Static variable in class ai.libs.jaicore.ml.cache.SplitInstruction
Constant string to identify this instruction.
computationTimes - Variable in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
The time it took to compute the meta features for each characterizer by name
ConfigurationException - Exception in ai.libs.jaicore.ml.core.exception
The ConfigurationException indicates an error during a configuration process.
ConfigurationException(String, Throwable) - Constructor for exception ai.libs.jaicore.ml.core.exception.ConfigurationException
Creates a new ConfigurationException with the given parameters.
ConfigurationException(String) - Constructor for exception ai.libs.jaicore.ml.core.exception.ConfigurationException
Creates a new ConfigurationException with the given parameters.
ConfigurationLearningCurveExtrapolationEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
Predicts the accuracy of a classifier with certain configurations on a point of its learning curve, given some anchorpoint and its configurations using the LCNet of pybnn Note: This code was copied from LearningCurveExtrapolationEvaluator and slightly reworked
ConfigurationLearningCurveExtrapolationEvaluator(int[], ISamplingAlgorithmFactory<IInstance, ASamplingAlgorithm<IInstance>>, IDataset<IInstance>, double, long, String, double[]) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.ConfigurationLearningCurveExtrapolationEvaluator
 
ConfigurationLearningCurveExtrapolator - Class in ai.libs.jaicore.ml.learningcurve.extrapolation
This class is a subclass of LearningCurveExtrapolator which deals with the slightly different setup that is required by the LCNet of pybnn
ConfigurationLearningCurveExtrapolator(Classifier, IDataset<IInstance>, double, int[], ISamplingAlgorithmFactory<IInstance, ASamplingAlgorithm<IInstance>>, long, String, double[]) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.ConfigurationLearningCurveExtrapolator
 
ConstantClassifier - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
ConstantClassifier() - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.ConstantClassifier
 
contains(double) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
ContainsNonNumericAttributesException - Exception in ai.libs.jaicore.ml.core.dataset
 
ContainsNonNumericAttributesException(String) - Constructor for exception ai.libs.jaicore.ml.core.dataset.ContainsNonNumericAttributesException
 
ContainsNonNumericAttributesException(String, Throwable) - Constructor for exception ai.libs.jaicore.ml.core.dataset.ContainsNonNumericAttributesException
 
countClassOccurrences(IDataset<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlLikeSampling
Count occurrences of every class.
countDatasetEntries(File, boolean) - Static method in class ai.libs.jaicore.ml.core.dataset.ArffUtilities
Counts the amount of datapoint entries in an ARFF file.
CPUS - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
createDataSetIndex(int, int) - Static method in class ai.libs.jaicore.ml.openml.OpenMLHelper
Creates a list of data sets by id in a file with caps for the maximum of features and instances.
createDefaultDiscretizationPolicies(IDataset<I>, List<Integer>, Map<Integer, Set<Object>>, DiscretizationHelper.DiscretizationStrategy, int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper
This method creates a default discretization policy for each numeric attribute in the attributes that have to be considered for stratum assignment.
createEmpty() - Method in interface ai.libs.jaicore.ml.core.dataset.IDataset
Creates an empty copy with the same attribute types as this IDataset.
createEmpty() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
createEmpty() - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstances
 
createImportStatementFromImportFolder(File, boolean) - Static method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
Makes the given folder a module to be usable as an import for python and creates a string that adds the folder to the python environment and then imports the folder itself as a module.
createRunIfDoesNotExist(MLExperiment) - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentDatabase
 
createRunIfDoesNotExist(MLExperiment) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
currentCluster - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
CVEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
 
CVEvaluator(IMeasure<Double, Double>, int) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.CVEvaluator
 

D

DataProvider - Enum in ai.libs.jaicore.ml.cache
 
dataset - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
DatasetFileSorter - Class in ai.libs.jaicore.ml.core.dataset.sampling.infiles
Sorts a Dataset file with a Mergesort.
DatasetFileSorter(File, TempFileHandler) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.DatasetFileSorter
 
DatasetFileSorter(File) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.DatasetFileSorter
 
datasetFolder - Static variable in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
DATASETS - Static variable in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
datasetToWekaInstances(IDataset<? extends IInstance>) - Static method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstancesUtil
 
DefaultProcessListener - Class in ai.libs.jaicore.ml.scikitwrapper
The DefaultProcessListener might be used to forward any type of outputs of a process to a logger.
DefaultProcessListener(boolean) - Constructor for class ai.libs.jaicore.ml.scikitwrapper.DefaultProcessListener
Constructor to initialize the DefaultProcessListener.
delete() - Method in class ai.libs.jaicore.ml.SubInstances
 
deleteAttributeAt(int) - Method in class ai.libs.jaicore.ml.SubInstances
 
deleteNet(String) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetClient
 
deleteNet() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetExtrapolationMethod
 
DELTA - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
DiscretizationHelper<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
This helper class provides methods that are required in order to discretize numeric attributes.
DiscretizationHelper() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper
 
DiscretizationHelper.DiscretizationStrategy - Enum in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
 
discretize(double, AttributeDiscretizationPolicy) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper
Discretizes the particular provided value.
discretizeAttributeValues(Map<Integer, AttributeDiscretizationPolicy>, Map<Integer, Set<Object>>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper
Discretizes the given attribute values with respect to the provided policies
distanceMeassure - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
distanceMeasure - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.ClusterStratiAssigner
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.Ensemble
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ConstantClassifier
 
distributionForInstance(Instance, double[]) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
distributionForInstance(Instance, double[]) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.HighProbClassifier
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionOptimizer
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.RandomUniformClassifier
 
distributionForInstance(Instance) - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
doAlgorithmStep() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
doInactiveStep() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ASamplingAlgorithm
 
doSplit(double) - Method in class ai.libs.jaicore.ml.core.dataset.util.StratifiedSplit
 

E

E - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
EMCNodeType - Enum in ai.libs.jaicore.ml.classification.multiclass.reduction
 
EMulticlassMeasure - Enum in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
Enum summarizing all multiclass measures.
EMultiClassPerformanceMeasure - Enum in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
 
EMultilabelPerformanceMeasure - Enum in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
Ensemble - Class in ai.libs.jaicore.ml.classification.multiclass
 
Ensemble() - Constructor for class ai.libs.jaicore.ml.classification.multiclass.Ensemble
 
equalLengthPolicy(List<Double>, int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper
Creates an equal length policy for the given values with respect to the given number of categories.
equals(Object) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.AAttributeValue
 
equals(Object) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeDiscretizationPolicy
 
equals(Object) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
equals(Object) - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
equals(Object) - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
equals(Object) - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
equals(Object) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
equals(Object) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurveConfiguration
 
equals(Object) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
equalSizePolicy(List<Double>, int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper
Creates an equal size policy for the given values with respect to the given number of categories.
ETA - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ConfigurationLearningCurveExtrapolationEvaluator
 
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.CVEvaluator
 
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ExtrapolatedSaturationPointEvaluator
 
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.FixedSplitClassifierEvaluator
 
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.LearningCurveExtrapolationEvaluator
Computes the (estimated) measure of the classifier on the full dataset
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
evaluate(Classifier, DescriptiveStatistics) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
evaluate(Classifier, DescriptiveStatistics) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
evaluate(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.SingleRandomSplitClassifierEvaluator
 
evaluateSplit(Classifier, Instances, Instances) - Method in interface ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.ISplitBasedClassifierEvaluator
Evaluate a hypothesis h being trained on a set of trainingData for some validationData.
evaluateSplit(Classifier, Instances, Instances) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.SimpleMLCSplitBasedClassifierEvaluator
 
evaluateSplit(Classifier, Instances, Instances) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.SimpleSLCSplitBasedClassifierEvaluator
 
evaluateSupervised(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.TimeoutableEvaluator
 
ExactMatchAccuracy - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
Computes the exact match of the predicted multi label vector and the expected.
ExactMatchAccuracy() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.ExactMatchAccuracy
 
ExactMatchLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
ExactMatchLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.ExactMatchLoss
 
EXP_4 - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
extractArffHeader(File) - Static method in class ai.libs.jaicore.ml.core.dataset.ArffUtilities
Extract the header of an ARFF file as a string.
ExtrapolatedSaturationPointEvaluator<I extends IInstance> - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
For the classifier a learning curve will be extrapolated with a given set of anchorpoints.
ExtrapolatedSaturationPointEvaluator(int[], ISamplingAlgorithmFactory<I, ? extends ASamplingAlgorithm<I>>, IDataset<I>, double, LearningCurveExtrapolationMethod, long, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.ExtrapolatedSaturationPointEvaluator
Create a classifier evaluator with an accuracy measurement at the extrapolated learning curves saturation point.
ExtrapolatedSaturationPointEvaluatorFactory - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka.factory
 
ExtrapolatedSaturationPointEvaluatorFactory(int[], ISamplingAlgorithmFactory<IInstance, ? extends ASamplingAlgorithm<IInstance>>, double, LearningCurveExtrapolationMethod) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.ExtrapolatedSaturationPointEvaluatorFactory
 
extrapolateLearningCurve() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
Measure the learner accuracy at the given anchorpoints and extrapolate a learning curve based the results.
extrapolateLearningCurveFromAnchorPoints(int[], double[], int) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawExtrapolationMethod
 
extrapolateLearningCurveFromAnchorPoints(int[], double[], int) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationExtrapolationMethod
 
extrapolateLearningCurveFromAnchorPoints(int[], double[], int) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetExtrapolationMethod
 
extrapolateLearningCurveFromAnchorPoints(int[], double[], int) - Method in interface ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolationMethod
 
extrapolationMethod - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
ExtrapolationRequest - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.client
This class describes the request that is sent to an Extrapolation Service.
ExtrapolationRequest() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
ExtrapolationServiceClient<C> - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.client
This class describes the client that is responsible for the communication with an Extrapolation Service.
ExtrapolationServiceClient(String, Class<C>) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationServiceClient
 

F

F1MacroAverageL - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
F1MacroAverageL() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.F1MacroAverageL
 
F1MacroAverageLLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
Compute the inverted F1 measure macro averaged by label.
F1MacroAverageLLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.F1MacroAverageLLoss
 
firstInstance() - Method in class ai.libs.jaicore.ml.SubInstances
 
FixedSplitClassifierEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
 
FixedSplitClassifierEvaluator(Instances, Instances) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.FixedSplitClassifierEvaluator
 
FoldBasedSubsetInstruction - Class in ai.libs.jaicore.ml.cache
Instruction to track a fold-based subset computation for a ReproducibleInstances object.
FoldBasedSubsetInstruction(String, int...) - Constructor for class ai.libs.jaicore.ml.cache.FoldBasedSubsetInstruction
Constructor to create a split Instruction that can be converted into json.
fromARFF(String) - Static method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
Creates a new ReproducibleInstances object.
fromHistory(List<Instruction>, String) - Static method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
Creates a ReproducibleInstances Object based on the given History.
fromJAICoreInstance(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
fromJAICoreInstance(LabeledInstance<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
fromJAICoreInstances(WekaCompatibleInstancesImpl) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
fromJAICoreInstances(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
fromJAICoreInstances(LabeledInstances<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
fromOpenML(String, String) - Static method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
Creates a new ReproducibleInstances object.

G

generateSplittingInfo(double...) - Method in interface ai.libs.jaicore.ml.weka.dataset.splitter.IMultilabelCrossValidation
Generate a string representation that represents only the split info part of the split string.
generateSplittingString(double...) - Method in interface ai.libs.jaicore.ml.weka.dataset.splitter.IMultilabelCrossValidation
Generate a String that represents a split of a data set into portions from the given portions sizes (must add up to <1).
get(int) - Method in class ai.libs.jaicore.ml.core.dataset.InstanceSchema
 
get(int) - Method in class ai.libs.jaicore.ml.SubInstances
 
getA() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
getA() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
getActual() - Method in class ai.libs.jaicore.ml.evaluation.MeasureAggregatedComputationEvent
 
getActual() - Method in class ai.libs.jaicore.ml.evaluation.MeasureAvgComputationEvent
 
getActual() - Method in class ai.libs.jaicore.ml.evaluation.MeasureListComputationEvent
 
getActual() - Method in class ai.libs.jaicore.ml.evaluation.MeasureSingleComputationEvent
 
getAdmissibleSearcherEvaluatorCombinationsForAttributeSelection() - Static method in class ai.libs.jaicore.ml.WekaUtil
Determines all attribute selection variants (search/evaluator combinations with default parametrization)
getAggregator() - Method in class ai.libs.jaicore.ml.evaluation.MeasureAggregatedComputationEvent
 
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.CaseControlSamplingFactory
 
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.GmeansSamplingFactory
 
getAlgorithm(int, IDataset<I>, Random) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.interfaces.ISamplingAlgorithmFactory
After the necessary config is done, this method returns a fully configured instance of a sampling algorithm.
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.KmeansSamplingFactory
 
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.LocalCaseControlSamplingFactory
 
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.OSMACSamplingFactory
 
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.SimpleRandomSamplingFactory
 
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.StratifiedSamplingFactory
 
getAlgorithm(int, IDataset<I>, Random) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.SystematicSamplingFactory
 
getAlgorithm() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getAlgorithmMode() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getAlgorithmModes() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
getAlgorithms() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
getAllCreatedStrati() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.ClassStratiFileAssigner
 
getAllCreatedStrati() - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.IStratiFileAssigner
Get the used strati temporary files and the amount of datapoints inside of it.
getAnchorPoints() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
getArbitrarySplit(Instances, Random, double...) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getAsDoubleVector() - Method in interface ai.libs.jaicore.ml.core.dataset.IInstance
Turns the instance into a double vector.
getAsDoubleVector() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleInstance
 
getAsDoubleVector() - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstance
 
getAssumedMemoryOverheadPerProcess() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getAttributes(Instances, boolean) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getAttributes(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getAttributeTypeList() - Method in class ai.libs.jaicore.ml.core.dataset.InstanceSchema
 
getAttributeTypes() - Method in interface ai.libs.jaicore.ml.core.dataset.IDataset
Returns the list of attribute types.
getAttributeTypes() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
getAttributeTypes() - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstances
 
getAttributeValue(int, Class<T>) - Method in interface ai.libs.jaicore.ml.core.dataset.IInstance
Getter for the value of an attribute for the given position.
getAttributeValue(int, Class<T>) - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleInstance
 
getAttributeValue(int, Class<T>) - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstance
 
getAvailableDatasets(File) - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
getAverageSeparability(Collection<String>) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.AllPairsTable
 
getB() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
getB() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
getBasicEvaluator() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.AbstractSplitBasedClassifierEvaluator
 
getBasicLearners() - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getBinaryClassifiers() - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getBridge() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
getBridge() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
getC() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
getC() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
getCachedClassifier(String, EMCNodeType, Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ClassifierCache
 
getCachedTrainingData(String, EMCNodeType, Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ClassifierCache
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.Ensemble
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.ConstantClassifier
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.HighProbClassifier
 
getCapabilities() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionOptimizer
 
getCapabilities() - Method in class ai.libs.jaicore.ml.RandomUniformClassifier
 
getCapabilities() - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
getCharacterizerGroups() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Gets the mapping of a Characterizer to the meta features it computes.
getCharacterizerNames() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Gets the names of the used Characterizers.
getCharacterizerNamesMappings() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Gets names for the used Characterizers.
getCharacterizers() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Gets the list of characterizers used in the computation of meta features.
getChildren() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getChildren() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
getChosenInstance() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.PilotEstimateSampling
 
getClassesActuallyContainedInDataset(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClassesAsArray(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClassesAsList(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClassesDeclaredInDataset(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClassifier() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getClassifier() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
getClassifier() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.events.MCCVSplitEvaluationEvent
 
getClassifierCache() - Static method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getClassifierDescriptor(Classifier) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClassifierOfRun(int) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
getClassName(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClassNames(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClassNameToIDMap(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getClusterResults() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
getCommand() - Method in class ai.libs.jaicore.ml.cache.Instruction
Sets command name that specifies the type of instruction represented by the object.
getConfigForAnchorPoints(int[], double[]) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationServiceClient
 
getConfiguration() - Method in interface ai.libs.jaicore.ml.core.predictivemodel.IPredictiveModel
Returns the IPredictiveModelConfiguration of this model.
getConfiguredClassifier(int, String, String, int, int, int, EMulticlassMeasure) - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
getContainedClasses() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getContainedClasses() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
Get the classes contained in the leaves of this node.
getConvergenceValue() - Method in interface ai.libs.jaicore.ml.interfaces.AnalyticalLearningCurve
Calculates or looks-up the value the learning curve converges to.
getConvergenceValue() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
getConvergenceValue() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurve
 
getCpus() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getCurveValue(double) - Method in interface ai.libs.jaicore.ml.interfaces.LearningCurve
Calculates or looks-up the curves value at a given point.
getCurveValue(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
getCurveValue(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurve
 
getCurveValue(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.PointWiseLearningCurve
 
getData() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.CVEvaluator
 
getData() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getDataset() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getDataset() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
getDatasetFolder() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
getDatasets() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
getDataSetsFromIndex() - Static method in class ai.libs.jaicore.ml.openml.OpenMLHelper
 
getDatasetsInFolder(File) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getDatasetSplitter() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getDataSourceById(int) - Static method in class ai.libs.jaicore.ml.openml.OpenMLHelper
 
getDeclaredClasses() - Method in class ai.libs.jaicore.ml.core.WekaCompatibleInstancesImpl
 
getDepthOfFirstCommonParent(List<Integer>) - Method in interface ai.libs.jaicore.ml.classification.multiclass.reduction.ITreeClassifier
 
getDepthOfFirstCommonParent(List<Integer>) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getDepthOfFirstCommonParent(List<String>) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
getDerivativeCurveValue(double) - Method in interface ai.libs.jaicore.ml.interfaces.AnalyticalLearningCurve
Calculates or looks-up the value of the derivative of the learning point at a given point.
getDerivativeCurveValue(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
getDerivativeCurveValue(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurve
 
getDomain() - Method in class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeType
 
getDomain() - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.categorical.ICategoricalAttributeType
 
getDomain() - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.multivalue.IMultiValueAttributeType
 
getDomain() - Method in class ai.libs.jaicore.ml.core.dataset.attribute.multivalue.MultiValueAttributeType
 
getEmptyDatasetForJAICoreInstance(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getEmptySetOfInstancesWithRefactoredClass(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getEmptySetOfInstancesWithRefactoredClass(Instances, List<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getEvaluator(EMultiClassPerformanceMeasure) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.MultiClassMeasureBuilder
 
getEvaluator(EMultilabelPerformanceMeasure) - Method in class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.MultiClassMeasureBuilder
 
getExpected() - Method in class ai.libs.jaicore.ml.evaluation.MeasureAggregatedComputationEvent
 
getExpected() - Method in class ai.libs.jaicore.ml.evaluation.MeasureAvgComputationEvent
 
getExpected() - Method in class ai.libs.jaicore.ml.evaluation.MeasureListComputationEvent
 
getExpected() - Method in class ai.libs.jaicore.ml.evaluation.MeasureSingleComputationEvent
 
getExperimentDescription(int, Classifier, int) - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
getExperimentsForWhichARunExists() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentDatabase
 
getExperimentsForWhichARunExists() - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
getExtrapolationMethod() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
getExtrapolator() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolatedEvent
 
getFeatureEvaluators() - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getFunctions() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
getGoalTester() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionGraphGenerator
 
getHeight() - Method in interface ai.libs.jaicore.ml.classification.multiclass.reduction.ITreeClassifier
 
getHeight() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getHeight() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
getHeight() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
getHeight() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
getIClassifierEvaluator(Instances, long) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.ExtrapolatedSaturationPointEvaluatorFactory
 
getIClassifierEvaluator(Instances, long) - Method in interface ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.IClassifierEvaluatorFactory
 
getIClassifierEvaluator(Instances, long) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.LearningCurveExtrapolationEvaluatorFactory
 
getIClassifierEvaluator(Instances, long) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getIDs() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
 
getImportString(Collection<String>) - Static method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
getIndicesOfContainedInstances(Instances, Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
Compute indices of instances of the original data set that are contained in the given subset.
getIndicesOfSubset(Instances, Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getInputs() - Method in class ai.libs.jaicore.ml.cache.Instruction
Inputs are parameters of the instruction.
getInstancesById(int) - Static method in class ai.libs.jaicore.ml.openml.OpenMLHelper
Downloads the data set with the given id and returns the Instances file for it.
getInstancesOfClass(Instances, Collection<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getInstancesOfClass(Instances, String) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getInstancesPerClass(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getInstructions() - Method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
 
getIntervals() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeDiscretizationPolicy
 
getIntValOfClassName(Instance, String) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getKthInstances(File, int) - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
getLabel() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
getLabel() - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstance
 
getLearner() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
getLogger() - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
getLoggerName() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.LearningCurveExtrapolationEvaluator
 
getLoggerName() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
getLoggerName() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
getLoggerName() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
getLowerBound() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
getMeasures() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
getMemoryInMB() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getMemoryLimitinMB() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getMessage(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.TimeoutableEvaluator
 
getMetaFeatureComputationTimes() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Gets the time in milliseconds it took to compute each group of meta features (Computed by a Characterizer).
getMetaLearners() - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getModelPath() - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
getMultiLabelMetrics() - Static method in class ai.libs.jaicore.ml.core.evaluation.measure.ClassifierMetricGetter
 
getMultipliedSeparability(Collection<String>) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.AllPairsTable
 
getName() - Method in interface ai.libs.jaicore.ml.weka.dataset.splitter.IMultilabelCrossValidation
Get the name of the implementing multilabel cross validation technique.
getName() - Method in class ai.libs.jaicore.ml.weka.dataset.splitter.RandomMultilabelCrossValidation
 
getNativeMultiClassClassifiers() - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getNewClassAttribute(Attribute) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getNewClassAttribute(Attribute, List<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getNodeType() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
getNumberOfAllowedCPUs() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getNumberOfAttributes() - Method in interface ai.libs.jaicore.ml.core.dataset.IDataset
Getter for the number of attributes (excluding target attribute).
getNumberOfAttributes() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
getNumberOfAttributes() - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstances
 
getNumberOfCandidatesInSelectionPhase() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getNumberOfColumns() - Method in class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
getNumberOfColumns() - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
getNumberOfColumns() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
getNumberOfColumns() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
getNumberOfColumns() - Method in interface ai.libs.jaicore.ml.interfaces.Instance
 
getNumberOfColumns() - Method in interface ai.libs.jaicore.ml.interfaces.Instances
 
getNumberOfColumns() - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstances
 
getNumberOfInstancesFromClass(Instances, String) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getNumberOfInstancesFromClass(Instances, Collection<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getNumberOfInstancesPerClass(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getNumberOfIterationsInSelectionPhase() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getNumberOfRows() - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
getNumberOfRows() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
getNumberOfRows() - Method in interface ai.libs.jaicore.ml.interfaces.Instances
 
getNumberOfRows() - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstances
 
getNumberOfRuns() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getNumCPUs() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
getNumCPUs() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.ClusterStratiAssigner
 
getNumCPUs() - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.IStratiAmountSelector
 
getNumCPUs() - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.IStratiAssigner
 
getNumInstancesUsedForTraining() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.events.MCCVSplitEvaluationEvent
 
getNumInstancesUsedForValidation() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.events.MCCVSplitEvaluationEvent
 
getNumMCIterations() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getNumSamples() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
getObservedScore() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.events.MCCVSplitEvaluationEvent
 
getOccurringLabels() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
getOccurringLabels() - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstances
 
getOffset() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
getOptionsOfWekaAlgorithm(Object) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getOut() - Method in class ai.libs.jaicore.ml.evaluation.MeasureAggregatedComputationEvent
 
getOut() - Method in class ai.libs.jaicore.ml.evaluation.MeasureAvgComputationEvent
 
getOut() - Method in class ai.libs.jaicore.ml.evaluation.MeasureListComputationEvent
 
getOut() - Method in class ai.libs.jaicore.ml.evaluation.MeasureSingleComputationEvent
 
getParameters() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
getParameterSets() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurveConfiguration
 
getParams() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.ParametricFunction
 
getPerformanceMeasure() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getPoint() - Method in interface ai.libs.jaicore.ml.core.dataset.IInstance
 
getPortionOfDataForPhase2() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getPossibleClassValues(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getProbabilityBoundaries() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlLikeSampling
 
getRawLastClassificationResults() - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
getRefactoredInstance(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getRefactoredInstance(Instance, List<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getRefactoredInstances(Instances, Map<String, String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getRelativeNumberOfInstancesFromClass(Instances, String) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getRelativeNumberOfInstancesFromClass(Instances, Collection<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getReplacedAttributeList(List<Attribute>, Attribute) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getRootGenerator() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionGraphGenerator
 
getRunIdOfClassifier(Classifier) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
getSaturationPoint(double) - Method in interface ai.libs.jaicore.ml.interfaces.AnalyticalLearningCurve
Calculated or search a saturation point with a tolerance of epsilon.
getSaturationPoint(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
getSaturationPoint(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurve
 
getSearchers() - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getSeed() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getSeed() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.SingleRandomSplitClassifierEvaluator
 
getSeed() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getSeeds() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
getSeparability(String, String) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.AllPairsTable
 
getSingleLabelMetrics() - Static method in class ai.libs.jaicore.ml.core.evaluation.measure.ClassifierMetricGetter
 
getSolutionLogDir() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getSortedDataset() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.SystematicSampling
 
getSplitBasedEvaluator() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getSplitEvaluationTime() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.events.MCCVSplitEvaluationEvent
 
getSplitSeparator() - Method in interface ai.libs.jaicore.ml.weka.dataset.splitter.IMultilabelCrossValidation
Get the separator used to separate single portions of a split in a given splitInfo.
getSplitSeparator() - Method in class ai.libs.jaicore.ml.weka.dataset.splitter.RandomMultilabelCrossValidation
 
getSplitTechniqueAndDetailsSeparator() - Static method in class ai.libs.jaicore.ml.weka.dataset.splitter.MultilabelDatasetSplitter
Obtain the token used to separate a split technique and the details about the split.
getSplitter(int) - Method in interface ai.libs.jaicore.ml.classification.multiclass.reduction.splitters.ISplitterFactory
 
getStrati() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.StratifiedSampling
 
getStratifiedSplit(Instances, long, double...) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getStratifiedSplit(ReproducibleInstances, Random, double...) - Static method in class ai.libs.jaicore.ml.WekaUtil
Creates a stratified split for a given ReproducibleInstances Object.
getStratifiedSplit(ReproducibleInstances, long, double...) - Static method in class ai.libs.jaicore.ml.WekaUtil
Creates a StratifiedSplit for a given ReproducibleInstances Object.
getStratifiedSplitIndices(Instances, Random, double...) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getStratifiedSplitIndicesAsList(Instances, Random, double...) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
getSuccessorGenerator() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionGraphGenerator
 
getTargetType(Class<T>) - Method in interface ai.libs.jaicore.ml.core.dataset.IDataset
Returns the attribute type of the target attribute.
getTargetType() - Method in interface ai.libs.jaicore.ml.core.dataset.IDataset
 
getTargetType(Class<T>) - Method in class ai.libs.jaicore.ml.core.dataset.InstanceSchema
 
getTargetType() - Method in class ai.libs.jaicore.ml.core.dataset.InstanceSchema
 
getTargetType(Class<T>) - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
getTargetType() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
getTargetType(Class<T>) - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstances
 
getTargetType() - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstances
 
getTargetValue(Class<T>) - Method in interface ai.libs.jaicore.ml.core.dataset.IInstance
Getter for the value of the target attribute.
getTargetValue(Class<T>) - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleInstance
 
getTargetValue(Class<T>) - Method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstance
 
getTestData() - Method in class ai.libs.jaicore.ml.core.dataset.util.StratifiedSplit
 
getTestSplit(Instances, int, int, String) - Method in interface ai.libs.jaicore.ml.weka.dataset.splitter.IMultilabelCrossValidation
Gets a test split from the given data based on the seed.
getTestSplit(Instances, String, String, String) - Static method in class ai.libs.jaicore.ml.weka.dataset.splitter.MultilabelDatasetSplitter
Split the Instances object according to the given splitDescription.
getTestSplit(Instances, int, int, String) - Method in class ai.libs.jaicore.ml.weka.dataset.splitter.RandomMultilabelCrossValidation
 
getTimeout(Classifier) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.TimeoutableEvaluator
 
getTimeoutForSolutionEvaluation() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getTimeoutInSeconds() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
getTimeoutPerCandidate() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getTimeouts() - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
getTimeoutTotal() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getTmpDir() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getTrain() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.FixedSplitClassifierEvaluator
 
getTrainFoldSize() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
getTrainingData() - Method in class ai.libs.jaicore.ml.core.dataset.util.StratifiedSplit
 
getTrainingPortion() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.SingleRandomSplitClassifierEvaluator
 
getTrainingPortion() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getTrainingTimes() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
getTrainSplit(Instances, int, int, String) - Method in interface ai.libs.jaicore.ml.weka.dataset.splitter.IMultilabelCrossValidation
Gets a train split from the given data based on the seed.
getTrainSplit(Instances, String, String, String) - Static method in class ai.libs.jaicore.ml.weka.dataset.splitter.MultilabelDatasetSplitter
Split the Instances object according to the given splitDescription.
getTrainSplit(Instances, int, int, String) - Method in class ai.libs.jaicore.ml.weka.dataset.splitter.RandomMultilabelCrossValidation
 
getType() - Method in class ai.libs.jaicore.ml.core.dataset.attribute.AAttributeValue
 
getUpperBound() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
getUpperBoundOnSeparability(Collection<String>) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.AllPairsTable
 
getValidate() - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.FixedSplitClassifierEvaluator
 
getValidationAlgorithm() - Method in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
getValue() - Method in class ai.libs.jaicore.ml.core.dataset.attribute.AAttributeValue
 
getValue() - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.IAttributeValue
 
getValueOfMetricForSingleLabelClassifier(Evaluation, String, int) - Static method in class ai.libs.jaicore.ml.core.evaluation.measure.ClassifierMetricGetter
Extracts the metric with the given name from the Evaluation object that is the result of evaluating a classifier.
getValueOfMultilabelClassifier(Result, String) - Static method in class ai.libs.jaicore.ml.core.evaluation.measure.ClassifierMetricGetter
Extracts the metric with the given name from the result of evaluating a multilabel classifier (Calls the corresponding method).
getWeights() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
getWeights() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
getxValues() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
getyValues() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
getyValues() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
GlobalCharacterizer - Class in ai.libs.jaicore.ml.metafeatures
Characterizer that applies a number of Characterizers to a data set.
GlobalCharacterizer() - Constructor for class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Initializes a new characterizer.
GMeans<C extends org.apache.commons.math3.ml.clustering.Clusterable> - Class in ai.libs.jaicore.ml.clustering
Implementation of Gmeans based on Helen Beierlings implementation of GMeans(https://github.com/helebeen/AILibs/blob/master/JAICore/jaicore-modifiedISAC/src/main/java/jaicore/modifiedISAC/ModifiedISACgMeans.java).
GMeans(Collection<C>) - Constructor for class ai.libs.jaicore.ml.clustering.GMeans
Initializes a basic cluster for the given Point using Mannhatten distance and seed=1
GMeans(Collection<C>, DistanceMeasure, long) - Constructor for class ai.libs.jaicore.ml.clustering.GMeans
Initializes a cluster for the given Point using a given distance meassure and a seed.
GmeansSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
Implementation of a sampling method using gmeans-clustering.
GmeansSampling(long, DistanceMeasure, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.GmeansSampling
 
GmeansSampling(long, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.GmeansSampling
 
GmeansSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
GmeansSamplingFactory() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.GmeansSamplingFactory
 
GMeansStratiAmountSelectorAndAssigner<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
Combined strati amount selector and strati assigner via g-means.
GMeansStratiAmountSelectorAndAssigner(int) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.GMeansStratiAmountSelectorAndAssigner
Constructor for GMeansStratiAmountSelectorAndAssigner with Manhattan distanceMeasure as a default.
GMeansStratiAmountSelectorAndAssigner(DistanceMeasure, int) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.GMeansStratiAmountSelectorAndAssigner
Constructor for GMeansStratiAmountSelectorAndAssigner with custom distanceMeasure.

H

HammingAccuracy - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
Measure for computing how similar two double vectors are according to hamming distance.
HammingAccuracy() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.HammingAccuracy
Standard c'tor.
HammingLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
HammingLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.HammingLoss
 
handleError(String) - Method in class ai.libs.jaicore.ml.scikitwrapper.AProcessListener
Handle the output of the error output stream.
handleError(String) - Method in class ai.libs.jaicore.ml.scikitwrapper.DefaultProcessListener
 
handleInput(String) - Method in class ai.libs.jaicore.ml.scikitwrapper.AProcessListener
Handle the output of the standard output stream.
handleInput(String) - Method in class ai.libs.jaicore.ml.scikitwrapper.DefaultProcessListener
 
hashCode() - Method in class ai.libs.jaicore.ml.core.dataset.attribute.AAttributeValue
 
hashCode() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeDiscretizationPolicy
 
hashCode() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
hashCode() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
hashCode() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
hashCode() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
hashCode() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
hashCode() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurveConfiguration
 
hashCode() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
hasOnlyNumericAttributes(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
HighProbClassifier - Class in ai.libs.jaicore.ml.classification.multiclass.reduction.reducer
 
HighProbClassifier(Classifier) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.HighProbClassifier
 
HILL_3 - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 

I

IAttributeType<D> - Interface in ai.libs.jaicore.ml.core.dataset.attribute
Wrapper interface for attribute types.
IAttributeValue<D> - Interface in ai.libs.jaicore.ml.core.dataset.attribute
A general interface for attribute values.
IBatchLearner<TARGET> - Interface in ai.libs.jaicore.ml.core.predictivemodel
The IBatchLearner models a learning algorithm which works in a batch fashion, i.e. takes a whole IDataset as training input.
ICategoricalAttributeType - Interface in ai.libs.jaicore.ml.core.dataset.attribute.categorical
Interface for categorical attribute types.
IClassifierEvaluator - Interface in ai.libs.jaicore.ml.evaluation.evaluators.weka
 
IClassifierEvaluatorFactory - Interface in ai.libs.jaicore.ml.evaluation.evaluators.weka.factory
 
IDataset<I extends IInstance> - Interface in ai.libs.jaicore.ml.core.dataset
Common interface of a dataset defining methods to access meta-data and instances contained in the dataset.
IDatasetSplitter - Interface in ai.libs.jaicore.ml.weka.dataset.splitter
 
ids - Variable in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
The names of all the meta features that are computed by this characterizer
IInstance - Interface in ai.libs.jaicore.ml.core.dataset
Interface of an instance which consists of attributes and a target value.
IInstancesClassifier - Interface in ai.libs.jaicore.ml.evaluation
 
ILOG_2 - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
IMeasure<I,O> - Interface in ai.libs.jaicore.ml.core.evaluation.measure
The interface of a measure which compute a value of O from expected and actual values of I.
IMultiClassClassificationExperimentConfig - Interface in ai.libs.jaicore.ml.experiments
 
IMultiClassClassificationExperimentDatabase - Interface in ai.libs.jaicore.ml.experiments
 
IMultilabelCrossValidation - Interface in ai.libs.jaicore.ml.weka.dataset.splitter
Represents an algorithm that realizes a split of a given multilabel instances in folds, given a seed, custom information about the split represented as a string, and the fold that is left out for testing.
IMultilabelMeasure - Interface in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
Interface for measures dealing with multilabel data.
IMultiValueAttributeType - Interface in ai.libs.jaicore.ml.core.dataset.attribute.multivalue
Interface for categorical attribute types.
init(IDataset<I>, int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
init(IDataset<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
Initializes the algorithm for stratum assignment.
init(IDataset<I>, int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.GMeansStratiAmountSelectorAndAssigner
 
init(IDataset<I>, int) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.IStratiAssigner
Initialize custom assigner if necessary.
init(IDataset<I>, int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.KMeansStratiAssigner
 
initializeCharacterizerNames() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
initializeCharacterizers() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Adds the required characterizers to GlobalCharacterizer.characterizers.
initializeCharacterizers() - Method in class ai.libs.jaicore.ml.metafeatures.NoProbingCharacterizer
 
initializeMetaFeatureIds() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
Instance - Interface in ai.libs.jaicore.ml.interfaces
 
instance(int) - Method in class ai.libs.jaicore.ml.SubInstances
 
Instances - Interface in ai.libs.jaicore.ml.interfaces
 
InstanceSchema - Class in ai.libs.jaicore.ml.core.dataset
 
InstanceSchema(List<IAttributeType<?>>, IAttributeType<?>) - Constructor for class ai.libs.jaicore.ml.core.dataset.InstanceSchema
 
instancesToJsonString(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
InstanceWiseF1 - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
Instance-wise F1 measure for multi-label classifiers.
InstanceWiseF1() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.InstanceWiseF1
 
InstanceWiseF1AsLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
The F1 Macro Averaged by the number of instances measure.
InstanceWiseF1AsLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.InstanceWiseF1AsLoss
 
Instruction - Class in ai.libs.jaicore.ml.cache
Instruction class that can be converted into json.
Instruction() - Constructor for class ai.libs.jaicore.ml.cache.Instruction
 
Interval - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
 
Interval(double, double) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
InvalidAnchorPointsException - Exception in ai.libs.jaicore.ml.learningcurve.extrapolation
Exception that is thrown, when the anchorpoints generated for learning curve extrapolation are not suitable.
InvalidAnchorPointsException() - Constructor for exception ai.libs.jaicore.ml.learningcurve.extrapolation.InvalidAnchorPointsException
 
InversePowerLawConfiguration - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.ipl
This class encapsulates the three parameters that are required in order to create a Inverse Power Law function.
InversePowerLawConfiguration() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
InversePowerLawExtrapolationMethod - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.ipl
This class describes a method for learning curve extrapolation which generates an Inverse Power Law function.
InversePowerLawExtrapolationMethod() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawExtrapolationMethod
 
InversePowerLawExtrapolationMethod(String, String) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawExtrapolationMethod
 
InversePowerLawLearningCurve - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.ipl
Representation of a learning curve with the Inverse Power Law function, which has three parameters named a, b and c.
InversePowerLawLearningCurve(double, double, double) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
InversePowerLawLearningCurve(InversePowerLawConfiguration) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
IOnlineLearner<TARGET> - Interface in ai.libs.jaicore.ml.core.predictivemodel
The IOnlineLearner models a learning algorithm which works in an online fashion, i.e. takes either a single IInstance or a Set thereof as training input.
IPipelineEvaluationConf - Interface in ai.libs.jaicore.ml.experiments
 
IPredictiveModel<TARGET> - Interface in ai.libs.jaicore.ml.core.predictivemodel
The IPredictiveModel corresponds to a model which can be used to make predictions based on given IInstancees.
IPredictiveModelConfiguration - Interface in ai.libs.jaicore.ml.core.predictivemodel
The IPredictiveModelConfiguration models a configuration of an IPredictiveModel.
IPrimitiveAttributeType<D> - Interface in ai.libs.jaicore.ml.core.dataset.attribute.primitive
Interface for categorical attribute types.
IProcessListener - Interface in ai.libs.jaicore.ml.scikitwrapper
 
IRerunnableSamplingAlgorithmFactory<I extends IInstance,A extends ASamplingAlgorithm<I>> - Interface in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.interfaces
Extension of the ISamplingAlgorithmFactory for sampling algorithms that can re-use informations from a previous run of the Sampling algorithm.
ISamplingAlgorithm<I extends IInstance> - Interface in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
Interface for sampling algorithms.
ISamplingAlgorithm - Interface in ai.libs.jaicore.ml.core.dataset.sampling
Interface for sampling algorithms.
ISamplingAlgorithmFactory<I extends IInstance,A extends ASamplingAlgorithm<I>> - Interface in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.interfaces
Interface for a factory, which creates a sampling algorithm.
isCacheLookup() - Method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
If true signifies that performance on this data should be looked up in cache
isCacheStorage() - Method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
If true signifies that performance evaluation should be stored.
isCompletelyConfigured() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
isCompletelyConfigured() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
isCompletelyConfigured() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
isCompletelyConfigured() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
ISingleAttributeTransformer - Interface in ai.libs.jaicore.ml.core.dataset.attribute.transformer
 
ISplitBasedClassifierEvaluator<O> - Interface in ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation
Interface for the evaluator measure bridge yielding the measured value as an instance of O.
ISplitter - Interface in ai.libs.jaicore.ml.classification.multiclass.reduction.splitters
 
ISplitterFactory<T extends ISplitter> - Interface in ai.libs.jaicore.ml.classification.multiclass.reduction.splitters
 
isSelfContained() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionGraphGenerator
 
IStratiAmountSelector<I extends IInstance> - Interface in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
Functional interface to write custom logic for selecting the amount of strati for a dataset.
IStratiAssigner<I extends IInstance> - Interface in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
Interface to write custom Assigner for datapoints to strati.
IStratiFileAssigner - Interface in ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling
Interface to implement custom Stratum assignment behavior.
isValidPreprocessorCombination(String, String) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
isValidValue(String) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeType
 
isValidValue(D) - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.IAttributeType
Validates whether a value conforms to this type.
isValidValue(Collection<String>) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.multivalue.MultiValueAttributeType
 
isValidValue(Boolean) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.primitive.BooleanAttributeType
 
isValidValue(Double) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.primitive.NumericAttributeType
 
iterator() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
ITreeClassifier - Interface in ai.libs.jaicore.ml.classification.multiclass.reduction
 

J

JaccardLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
JaccardLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.JaccardLoss
 
JaccardScore - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
JaccardScore() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.JaccardScore
 
JANOSCHEK - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
jsonStringToInstances(String) - Static method in class ai.libs.jaicore.ml.WekaUtil
 

K

KAPPA - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
KmeansSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
Implementation of a sampling method using kmeans-clustering.
KmeansSampling(long, int, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.KmeansSampling
Implementation of a sampling method using kmeans-clustering.
KmeansSampling(long, DistanceMeasure, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.KmeansSampling
Implementation of a sampling method using kmeans-clustering.
KmeansSampling(long, int, DistanceMeasure, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.KmeansSampling
Implementation of a sampling method using kmeans-clustering.
KmeansSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
KmeansSamplingFactory() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.KmeansSamplingFactory
 
KMeansStratiAssigner<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
Cluster the data set with k-means into k Clusters, where each cluster stands for one stratum.
KMeansStratiAssigner(DistanceMeasure, int) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.KMeansStratiAssigner
Constructor for KMeansStratiAssigner.

L

LabeledInstance<L> - Interface in ai.libs.jaicore.ml.interfaces
 
LabeledInstances<L> - Interface in ai.libs.jaicore.ml.interfaces
 
LCNetClient - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet
 
LCNetClient() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetClient
 
LCNetExtrapolationMethod - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet
This class represents a learning curve extrapolation using the LCNet from pybnn.
LCNetExtrapolationMethod(String) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetExtrapolationMethod
 
learner - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
LearningCurve - Interface in ai.libs.jaicore.ml.interfaces
Interface for the result of an learning curve extrapolation.
LearningCurveExtrapolatedEvent - Class in ai.libs.jaicore.ml.learningcurve.extrapolation
 
LearningCurveExtrapolatedEvent(LearningCurveExtrapolator) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolatedEvent
 
LearningCurveExtrapolationEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
Evaluates a classifier by predicting its learning curve with a few anchorpoints.
LearningCurveExtrapolationEvaluator(int[], ISamplingAlgorithmFactory<IInstance, ? extends ASamplingAlgorithm<IInstance>>, IDataset<? extends IInstance>, double, LearningCurveExtrapolationMethod, long) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.LearningCurveExtrapolationEvaluator
Create a classifier evaluator with learning curve extrapolation.
LearningCurveExtrapolationEvaluatorFactory - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka.factory
 
LearningCurveExtrapolationEvaluatorFactory(int[], ISamplingAlgorithmFactory<IInstance, ? extends ASamplingAlgorithm<IInstance>>, double, LearningCurveExtrapolationMethod) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.LearningCurveExtrapolationEvaluatorFactory
 
LearningCurveExtrapolationMethod - Interface in ai.libs.jaicore.ml.learningcurve.extrapolation
Functional interface for extrapolating a learning curve from anchorpoints.
LearningCurveExtrapolator<I extends IInstance> - Class in ai.libs.jaicore.ml.learningcurve.extrapolation
Abstract class for implementing a learning curve extrapolation method with some anchor points.
LearningCurveExtrapolator(LearningCurveExtrapolationMethod, Classifier, IDataset<I>, double, int[], ISamplingAlgorithmFactory<I, ? extends ASamplingAlgorithm<I>>, long) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
Create a learning curve extrapolator with a subsampling factory.
LinearCombinationConstants - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lc
This class contains required constant names for the linear combination learning curve.
LinearCombinationExtrapolationMethod - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lc
This class describes a method for learning curve extrapolation which generates a linear combination of suitable functions.
LinearCombinationExtrapolationMethod() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationExtrapolationMethod
 
LinearCombinationExtrapolationMethod(String, String) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationExtrapolationMethod
 
LinearCombinationFunction - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lc
This is a basic class that describes a function which is a weighted combination of individual functions.
LinearCombinationFunction(List<UnivariateFunction>, List<Double>) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
LinearCombinationLearningCurve - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lc
The LinearCombinationLearningCurve consists of the actual linear combination function that describes the learning curve, as well as the derivative of this function.
LinearCombinationLearningCurve(LinearCombinationLearningCurveConfiguration, int) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurve
 
LinearCombinationLearningCurveConfiguration - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lc
A configuration for a linear combination learning curve consists of parameterizations for at least one linear combination function.
LinearCombinationLearningCurveConfiguration() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurveConfiguration
 
LinearCombinationParameterSet - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lc
This class encapsulates all parameters that are required in order to create a weighted linear combination of parameterized functions.
LinearCombinationParameterSet() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
listenTo(Process) - Method in class ai.libs.jaicore.ml.scikitwrapper.AProcessListener
 
listenTo(Process) - Method in interface ai.libs.jaicore.ml.scikitwrapper.IProcessListener
Lets the process listener listen to the output and error stream of the given process.
LoadDataSetInstruction - Class in ai.libs.jaicore.ml.cache
Instruction for dataset loading, provider and id are used to identify the data set.
LoadDataSetInstruction(DataProvider, String) - Constructor for class ai.libs.jaicore.ml.cache.LoadDataSetInstruction
Constructor to create an instruction for loading a dataset that can be converted to json.
LocalCaseControlSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol
 
LocalCaseControlSampling(Random, int, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.LocalCaseControlSampling
 
LocalCaseControlSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
LocalCaseControlSamplingFactory() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.LocalCaseControlSamplingFactory
 
LOG_LOG_LINEAR - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
LOG_POWER - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
LossScoreTransformer<I> - Class in ai.libs.jaicore.ml.core.evaluation.measure
This transformer transforms a decomposable double measure from a scoring function to a loss or vice versa.
LossScoreTransformer(ADecomposableDoubleMeasure<I>) - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.LossScoreTransformer
Constructor for setting the measure to be transformed from loss to score or vice versa.

M

main(String[]) - Static method in class ai.libs.jaicore.ml.classification.multiclass.reduction.PipelineOptimizer
 
main(String[]) - Static method in class ai.libs.jaicore.ml.openml.OpenMLHelper
 
MCCVSplitEvaluationEvent - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka.events
 
MCCVSplitEvaluationEvent(Classifier, int, int, int, double) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.events.MCCVSplitEvaluationEvent
 
MCTreeMergeNode - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
MCTreeMergeNode(String, Collection<String>, Classifier, Collection<String>, Classifier) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeMergeNode
 
MCTreeMergeNode(Classifier, List<Collection<String>>, List<Classifier>) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeMergeNode
 
MCTreeNode - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
MCTreeNode(Classifier, Classifier, String) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
MCTreeNode(List<Integer>) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
MCTreeNode(List<Integer>, EMCNodeType, String) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
MCTreeNode(List<Integer>, EMCNodeType, Classifier) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
MCTreeNodeLeaf - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
MCTreeNodeLeaf(int) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
MCTreeNodeReD - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
MCTreeNodeReD(String, Collection<String>, String, Collection<String>, String) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
MCTreeNodeReD(Classifier, Collection<String>, Classifier, Collection<String>, Classifier) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
MCTreeNodeReD(String, Collection<String>, Classifier, Collection<String>, Classifier) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
MCTreeNodeReD(Classifier, List<Collection<String>>, List<Classifier>) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
MCTreeNodeReD() - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
MCTreeNodeReDLeaf - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
MCTreeNodeReDLeaf(String) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
MeanSquaredErrorLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
 
MeanSquaredErrorLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.MeanSquaredErrorLoss
 
MeasureAggregatedComputationEvent<INPUT,OUTPUT> - Class in ai.libs.jaicore.ml.evaluation
 
MeasureAggregatedComputationEvent(List<INPUT>, List<INPUT>, IAggregateFunction<OUTPUT>, OUTPUT) - Constructor for class ai.libs.jaicore.ml.evaluation.MeasureAggregatedComputationEvent
 
MeasureAvgComputationEvent<INPUT,OUTPUT> - Class in ai.libs.jaicore.ml.evaluation
 
MeasureAvgComputationEvent(List<INPUT>, List<INPUT>, OUTPUT) - Constructor for class ai.libs.jaicore.ml.evaluation.MeasureAvgComputationEvent
 
MeasureListComputationEvent<INPUT,OUTPUT> - Class in ai.libs.jaicore.ml.evaluation
 
MeasureListComputationEvent(List<INPUT>, List<INPUT>, List<OUTPUT>) - Constructor for class ai.libs.jaicore.ml.evaluation.MeasureListComputationEvent
 
MEASURES - Static variable in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
MeasureSingleComputationEvent<INPUT,OUTPUT> - Class in ai.libs.jaicore.ml.evaluation
 
MeasureSingleComputationEvent(INPUT, INPUT, OUTPUT) - Constructor for class ai.libs.jaicore.ml.evaluation.MeasureSingleComputationEvent
 
MEM_MAX - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
MEM_OPP - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
merge(Instances, Instances) - Method in class ai.libs.jaicore.ml.core.WekaInstancesFeatureUnion
 
merge(Collection<Instances>) - Method in class ai.libs.jaicore.ml.core.WekaInstancesFeatureUnion
 
mergeClassesOfInstances(Instances, Collection<String>, Collection<String>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
mergeClassesOfInstances(Instances, List<Set<String>>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
MinHashingTransformer - Class in ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue
Converts the sets of multi-value features to short signatures.
MinHashingTransformer(int[][]) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue.MinHashingTransformer
Constructor where the user gives predefined permutations.
MinHashingTransformer(int, int, long) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue.MinHashingTransformer
Constructor where suitable permutations are created randomly.
MLExperiment - Class in ai.libs.jaicore.ml.experiments
 
MLExperiment(String, String, String, int, int, int, int, String) - Constructor for class ai.libs.jaicore.ml.experiments.MLExperiment
 
MMF - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
ModelBuildFailedException - Exception in ai.libs.jaicore.ml.core
 
ModelBuildFailedException(String) - Constructor for exception ai.libs.jaicore.ml.core.ModelBuildFailedException
 
ModelBuildFailedException(String, Throwable) - Constructor for exception ai.libs.jaicore.ml.core.ModelBuildFailedException
 
MonteCarloCrossValidationEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
A classifier evaluator that can perform a (monte-carlo)cross-validation on the given dataset.
MonteCarloCrossValidationEvaluator(ISplitBasedClassifierEvaluator<Double>, IDatasetSplitter, int, Instances, double, long) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
MonteCarloCrossValidationEvaluator(ISplitBasedClassifierEvaluator<Double>, int, Instances, double, long) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
MonteCarloCrossValidationEvaluatorFactory - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka.factory
 
MonteCarloCrossValidationEvaluatorFactory() - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
MULTI_LABEL_METRICS - Static variable in class ai.libs.jaicore.ml.core.evaluation.measure.ClassifierMetricGetter
Available metrics for multilabelclassifiers
MultiClassClassificationExperimentRunner - Class in ai.libs.jaicore.ml.experiments
 
MultiClassClassificationExperimentRunner(File, String[], Map<String, String[]>, int[], int, float, int, int, EMulticlassMeasure, IMultiClassClassificationExperimentDatabase) - Constructor for class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
MulticlassClassStratifiedSplitter - Class in ai.libs.jaicore.ml.weka.dataset.splitter
Makes use of the WekaUtil to split the data into a class-oriented stratified split preserving the class distribution.
MulticlassClassStratifiedSplitter() - Constructor for class ai.libs.jaicore.ml.weka.dataset.splitter.MulticlassClassStratifiedSplitter
 
MultiClassMeasureBuilder - Class in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
 
MultiClassMeasureBuilder() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.MultiClassMeasureBuilder
 
MultilabelDatasetSplitter - Class in ai.libs.jaicore.ml.weka.dataset.splitter
This class provides methods to obtain train and test splits for a given data set and split technique.
MultiValueAttributeType - Class in ai.libs.jaicore.ml.core.dataset.attribute.multivalue
The multi-value attribute type describes the domain a value of a respective multi-value attribute value stems from.
MultiValueAttributeType(Set<String>) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.multivalue.MultiValueAttributeType
Constructor setting the domain of the multi-value attribute values.
MultiValueAttributeValue - Class in ai.libs.jaicore.ml.core.dataset.attribute.multivalue
Multi-value attribute value as it can be part of an instance.
MultiValueAttributeValue(IMultiValueAttributeType) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.multivalue.MultiValueAttributeValue
Standard c'tor.
MultiValueAttributeValue(IMultiValueAttributeType, Collection<String>) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.multivalue.MultiValueAttributeValue
C'tor setting the value of this attribute as well.
MultiValueBinaryzationTransformer - Class in ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue
Transforms a multi-valued feature into a 0/1 Vector, where each dimension represents one of the values, i.e. 1 in one dimension => the feature contains this value, 0 in one dimension => the feature does not contain this value.
MultiValueBinaryzationTransformer() - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue.MultiValueBinaryzationTransformer
 
MySQLExperimentDatabaseHandle - Class in ai.libs.jaicore.ml.experiments
 
MySQLExperimentDatabaseHandle(String, String, String, String) - Constructor for class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 

N

needsBinarization(Instances, boolean) - Static method in class ai.libs.jaicore.ml.WekaUtil
Returns true if there is at least one nominal attribute in the given dataset that has more than 2 values.
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.ReservoirSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.StratifiedFileSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.SystematicFileSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.ClassifierWeightedSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.PilotEstimateSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.GmeansSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.KmeansSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.SimpleRandomSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.StratifiedSampling
 
nextWithException() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.SystematicSampling
 
NoProbingCharacterizer - Class in ai.libs.jaicore.ml.metafeatures
A Characterizer that applies several characterizers to a data set, but does not use any probing.
NoProbingCharacterizer() - Constructor for class ai.libs.jaicore.ml.metafeatures.NoProbingCharacterizer
Constructs a new NoProbingCharacterizer.
NumericAttributeType - Class in ai.libs.jaicore.ml.core.dataset.attribute.primitive
The numeric attribute type.
NumericAttributeType() - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.primitive.NumericAttributeType
 
NumericAttributeValue - Class in ai.libs.jaicore.ml.core.dataset.attribute.primitive
Numeric attribute value as it can be part of an instance.
NumericAttributeValue(NumericAttributeType) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.primitive.NumericAttributeValue
Standard c'tor.
NumericAttributeValue(NumericAttributeType, Double) - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.primitive.NumericAttributeValue
C'tor setting the value of this attribute as well.
numInstances() - Method in class ai.libs.jaicore.ml.SubInstances
 

O

OneHotEncodingTransformer - Class in ai.libs.jaicore.ml.core.dataset.attribute.transformer
 
OneHotEncodingTransformer() - Constructor for class ai.libs.jaicore.ml.core.dataset.attribute.transformer.OneHotEncodingTransformer
 
OpenMLHelper - Class in ai.libs.jaicore.ml.openml
 
OpenMLHelper() - Constructor for class ai.libs.jaicore.ml.openml.OpenMLHelper
 
OSMAC<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol
 
OSMAC(Random, int, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.OSMAC
 
OSMACSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
OSMACSamplingFactory() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.OSMACSamplingFactory
 
outputFileWriter - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.AFileSamplingAlgorithm
 

P

ParametricFunction - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lc
This is a basic class that describes a function that can be parameterized with a set of parameters.
ParametricFunction() - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.ParametricFunction
 
ParametricFunction(Map<String, Double>) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.ParametricFunction
 
PHASE2 - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
PilotEstimateSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol
 
PilotEstimateSampling(IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.PilotEstimateSampling
 
PipelineOptimizer - Class in ai.libs.jaicore.ml.classification.multiclass.reduction
 
PipelineOptimizer() - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.PipelineOptimizer
 
PointWiseLearningCurve - Class in ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet
This class represents a learning curve that gets returned by the LCNet from pybnn
PointWiseLearningCurve(int, double[], String) - Constructor for class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.PointWiseLearningCurve
 
POW_3 - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
POW_4 - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
PrecisionAsLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
 
PrecisionAsLoss(int) - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.PrecisionAsLoss
 
predict(IInstance) - Method in interface ai.libs.jaicore.ml.core.predictivemodel.IPredictiveModel
Performs a prediction based on the given IInstance and returns the result.
predict(IDataset) - Method in interface ai.libs.jaicore.ml.core.predictivemodel.IPredictiveModel
Performs multiple predictions based on the IInstances contained in the given IDatasets and returns the result.
predict(int, double[], String) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetClient
 
PredictionException - Exception in ai.libs.jaicore.ml.core.exception
The PredictionException indicates that an error occurred during a prediction process.
PredictionException(String, Throwable) - Constructor for exception ai.libs.jaicore.ml.core.exception.PredictionException
Creates a new PredictionException with the given parameters.
PredictionException(String) - Constructor for exception ai.libs.jaicore.ml.core.exception.PredictionException
Creates a new PredictionException with the given parameters.
PREFIX - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
PREFIX_MEM - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
PREFIX_SELECTION - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
preSampleSize - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.PilotEstimateSampling
 
printClassSplitAssignments(List<Instances>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
printDoubleRepresentation() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
printNestedWekaClassifier(Classifier) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
ProbabilisticMonteCarloCrossValidationEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
A classifier evaluator that can perform a (monte-carlo)cross-validation on the given dataset.
ProbabilisticMonteCarloCrossValidationEvaluator(ISplitBasedClassifierEvaluator<Double>, IDatasetSplitter, int, double, Instances, double, long) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
probabilityBoundaries - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlLikeSampling
 

R

rand - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlLikeSampling
 
random - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
RandomMultilabelCrossValidation - Class in ai.libs.jaicore.ml.weka.dataset.splitter
Class executing pseudo-random splits to enable multilabelcrossvalidation.
RandomMultilabelCrossValidation() - Constructor for class ai.libs.jaicore.ml.weka.dataset.splitter.RandomMultilabelCrossValidation
 
randomSeed - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.ClusterStratiAssigner
 
RandomSplitter - Class in ai.libs.jaicore.ml.classification.multiclass.reduction.splitters
 
RandomSplitter(Random) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.splitters.RandomSplitter
 
RandomUniformClassifier - Class in ai.libs.jaicore.ml
 
RandomUniformClassifier() - Constructor for class ai.libs.jaicore.ml.RandomUniformClassifier
 
RankLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
RankLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.RankLoss
 
RankScore - Class in ai.libs.jaicore.ml.core.evaluation.measure.multilabel
 
RankScore() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.multilabel.RankScore
 
realizeSplit(Instances, Collection<Integer>[]) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
realizeSplit(Instances, List<List<Integer>>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
realizeSplitAsCopiedInstances(Instances, List<List<Integer>>) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
realizeSplitAsCopiedInstances(Instances, Collection<Integer>[]) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
realizeSplitAsSubInstances(Instances, Collection<Integer>[]) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
receiveEvent(IEvent) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
ReductionGraphGenerator - Class in ai.libs.jaicore.ml.classification.multiclass.reduction.reducer
 
ReductionGraphGenerator(Random, Instances) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionGraphGenerator
 
ReductionOptimizer - Class in ai.libs.jaicore.ml.classification.multiclass.reduction.reducer
 
ReductionOptimizer(long) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionOptimizer
 
registerListener(Object) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.LearningCurveExtrapolationEvaluator
Register observers for learning curve predictions (including estimates of the time)
registerListener(Object) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
remove(int) - Method in class ai.libs.jaicore.ml.SubInstances
 
removeClassAttribute(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
removeClassAttribute(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
ReproducibleInstances - Class in ai.libs.jaicore.ml.cache
New Instances class to track splits and data origin.
ReproducibleInstances(ReproducibleInstances) - Constructor for class ai.libs.jaicore.ml.cache.ReproducibleInstances
 
ReservoirSampling - Class in ai.libs.jaicore.ml.core.dataset.sampling.infiles
Implementation of the Reservoir Sampling algorithm(comparable to a Simple Random Sampling for streamed data).
ReservoirSampling(Random, File) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.ReservoirSampling
 
RootMeanSquaredErrorLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
The root mean squared loss function.
RootMeanSquaredErrorLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.RootMeanSquaredErrorLoss
 
RPNDSplitter - Class in ai.libs.jaicore.ml.classification.multiclass.reduction.splitters
 
RPNDSplitter(Random, Classifier) - Constructor for class ai.libs.jaicore.ml.classification.multiclass.reduction.splitters.RPNDSplitter
 
runAll() - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
runAny() - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
runExperiment(int, int, int, int) - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 
RUNS - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
runSpecific(int) - Method in class ai.libs.jaicore.ml.experiments.MultiClassClassificationExperimentRunner
 

S

sample - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ASamplingAlgorithm
 
SampleElementAddedEvent - Class in ai.libs.jaicore.ml.core.dataset.sampling
 
SampleElementAddedEvent(String) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.SampleElementAddedEvent
 
sampleSize - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.AFileSamplingAlgorithm
 
sampleSize - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ASamplingAlgorithm
 
samplingAlgorithm - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
samplingAlgorithmFactory - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
ScikitLearnWrapper - Class in ai.libs.jaicore.ml.scikitwrapper
Wraps a Scikit-Learn Python process by utilizing a template to start a classifier in Scikit with the given classifier.
ScikitLearnWrapper(String, String, boolean) - Constructor for class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
Starts a new wrapper and creates its underlying script with the given parameters.
ScikitLearnWrapper(String, String) - Constructor for class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
Starts a new wrapper and creates its underlying script with the given parameters.
ScikitLearnWrapper(String, String, File) - Constructor for class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
ScikitLearnWrapper.ProblemType - Enum in ai.libs.jaicore.ml.scikitwrapper
 
seed - Variable in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
SEEDS - Static variable in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
SELECTION_CANDIDATES - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
SELECTION_ITERATIONS - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
selectStratiAmount(IDataset<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
selectStratiAmount(IDataset<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.GMeansStratiAmountSelectorAndAssigner
 
selectStratiAmount(IDataset<I>) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.IStratiAmountSelector
Select a suitable amount of strati for a Dataset.
set(int, Instance) - Method in class ai.libs.jaicore.ml.SubInstances
 
setA(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
setApiKey(String) - Static method in class ai.libs.jaicore.ml.openml.OpenMLHelper
 
setArffHeader(String) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.ClassStratiFileAssigner
 
setArffHeader(String) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.IStratiFileAssigner
Set the header of the original ARFF input file.
setB(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
setBaseClassifier(Classifier) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
setBaseClassifier(Classifier) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
setBasicEvaluator(IMeasure<I, O>) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.AbstractSplitBasedClassifierEvaluator
 
setC(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
setCacheLookup(boolean) - Method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
If true signifies that performance on this data should be looked up in cache
setCacheStorage(boolean) - Method in class ai.libs.jaicore.ml.cache.ReproducibleInstances
If set to true, signifies that performance evaluation should be stored.
setChosenInstance(I) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.PilotEstimateSampling
 
setClusterResults(List<CentroidCluster<I>>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
setClusterSeed(long) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.GmeansSamplingFactory
Set the seed the clustering will use for initialization.
setClusterSeed(long) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.KmeansSamplingFactory
Set the seed the clustering will use for initialization.
setCommand(String) - Method in class ai.libs.jaicore.ml.cache.Instruction
Gets command name that specifies the type of instruction represented by the object.
setComparator(Comparator<String>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.DatasetFileSorter
 
setConfiguration(IPredictiveModelConfiguration) - Method in interface ai.libs.jaicore.ml.core.predictivemodel.IPredictiveModel
Sets the IPredictiveModelConfiguration of this model to the given one.
setConfigurations(double[]) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetExtrapolationMethod
 
setData(Instances) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.CVEvaluator
 
setDatapointComparator(Comparator<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.SystematicSamplingFactory
Set a custom comparator that will be used to sort the datapoints before sampling.
setDistanceMeassure(DistanceMeasure) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ClusterSampling
 
setDistanceMeassure(DistanceMeasure) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.GmeansSamplingFactory
Set the distance measure for the clustering.
setDistanceMeassure(DistanceMeasure) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.KmeansSamplingFactory
Set the distance measure for the clustering.
setEpsilon(double) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ExtrapolatedSaturationPointEvaluator
 
setFullDatasetSize(int) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ConfigurationLearningCurveExtrapolationEvaluator
 
setFullDatasetSize(int) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.LearningCurveExtrapolationEvaluator
 
setFunctions(List<UnivariateFunction>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
setInputs(Map<String, String>) - Method in class ai.libs.jaicore.ml.cache.Instruction
Sets the input parameters that will be used to reproduce the effects done by this instruction.
setIntervals(List<Interval>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeDiscretizationPolicy
 
setK(int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.KmeansSamplingFactory
Set how many clusters shall be created.
setLabel(String) - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
setLabel(L) - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstance
 
setLoggerName(String) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.LearningCurveExtrapolationEvaluator
 
setLoggerName(String) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.MonteCarloCrossValidationEvaluator
 
setLoggerName(String) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
setLoggerName(String) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
setLowerBound(double) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
setModelPath(File) - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
setNodeNumbering(boolean) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.reducer.ReductionGraphGenerator
 
setNodeType(EMCNodeType) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
setNumCPUs(int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeBasedStratiAmountSelectorAndAssigner
 
setNumCPUs(int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.ClusterStratiAssigner
 
setNumCPUs(int) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.IStratiAmountSelector
Sets the number of CPU cores that can be used for parallel computation
setNumCPUs(int) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.IStratiAssigner
Sets the number of CPU cores that can be used for parallel computation
setNumSamples(Integer) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
setOffset(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
setOutputFileName(String) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.AFileSamplingAlgorithm
 
setParameters(Map<String, Map<String, Double>>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
setParameterSets(List<LinearCombinationParameterSet>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurveConfiguration
 
setParams(Map<String, Double>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.ParametricFunction
 
setPreSampleSize(int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.LocalCaseControlSamplingFactory
Set the size of the sample the pilot estimator will be trained with.
setPreSampleSize(int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.OSMACSamplingFactory
Set the size of the sample the pilot estimator will be trained with.
setPreviousRun(CaseControlSampling<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.CaseControlSamplingFactory
 
setPreviousRun(GmeansSampling<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.GmeansSamplingFactory
 
setPreviousRun(A) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.interfaces.IRerunnableSamplingAlgorithmFactory
Set the previous run of the sampling algorithm, if one occurred, can be set here to get data from it.
setPreviousRun(KmeansSampling<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.KmeansSamplingFactory
 
setPreviousRun(LocalCaseControlSampling<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.LocalCaseControlSamplingFactory
 
setPreviousRun(OSMAC<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.OSMACSamplingFactory
 
setPreviousRun(StratifiedSampling<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.StratifiedSamplingFactory
 
setPreviousRun(SystematicSampling<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.SystematicSamplingFactory
 
setProbabilityBoundaries(List<SetUtil.Pair<I, Double>>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.casecontrol.CaseControlLikeSampling
 
setProblemType(ScikitLearnWrapper.ProblemType) - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
setSampleSize(int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.AFileSamplingAlgorithm
 
setSampleSize(int) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.ASamplingAlgorithm
 
setSchema(InstanceSchema) - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleInstance
 
setSeed(int) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.SingleRandomSplitClassifierEvaluator
 
setSortedDataset(IDataset<I>) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.SystematicSampling
 
setStrati(IDataset<I>[]) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.StratifiedSampling
 
setTargets(int...) - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
setTempFileHandler(TempFileHandler) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.ClassStratiFileAssigner
 
setTempFileHandler(TempFileHandler) - Method in interface ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.IStratiFileAssigner
Set the temporary file handler, which will be used to manage the temporary files for the strati.
setTrainingPortion(float) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.SingleRandomSplitClassifierEvaluator
 
setUpperBound(double) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
setValue(D) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.AAttributeValue
 
setValue(D) - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.IAttributeValue
 
setWeights(List<Double>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
setWeights(Map<String, Double>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
setxValues(List<Integer>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
setyValues(List<Double>) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
SimpleDataset - Class in ai.libs.jaicore.ml.core.dataset.standard
 
SimpleDataset(InstanceSchema) - Constructor for class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
SimpleInstance - Class in ai.libs.jaicore.ml.core.dataset.standard
 
SimpleInstance(ArrayList<IAttributeValue<?>>, IAttributeValue<?>) - Constructor for class ai.libs.jaicore.ml.core.dataset.standard.SimpleInstance
 
SimpleInstance(InstanceSchema, ArrayList<IAttributeValue<?>>, IAttributeValue<?>) - Constructor for class ai.libs.jaicore.ml.core.dataset.standard.SimpleInstance
 
SimpleInstanceImpl - Class in ai.libs.jaicore.ml.core
 
SimpleInstanceImpl() - Constructor for class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
SimpleInstanceImpl(int) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
SimpleInstanceImpl(Collection<Double>) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
SimpleInstanceImpl(double[]) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
SimpleInstanceImpl(String) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
SimpleInstanceImpl(JsonNode) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
SimpleInstancesImpl - Class in ai.libs.jaicore.ml.core
 
SimpleInstancesImpl() - Constructor for class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
SimpleInstancesImpl(int) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
SimpleInstancesImpl(String) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
SimpleInstancesImpl(JsonNode) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
SimpleInstancesImpl(File) - Constructor for class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
SimpleLabeledInstanceImpl - Class in ai.libs.jaicore.ml.core
 
SimpleLabeledInstanceImpl() - Constructor for class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
SimpleLabeledInstanceImpl(String) - Constructor for class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
SimpleLabeledInstanceImpl(JsonNode) - Constructor for class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
SimpleLabeledInstancesImpl - Class in ai.libs.jaicore.ml.core
 
SimpleLabeledInstancesImpl() - Constructor for class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
SimpleLabeledInstancesImpl(String) - Constructor for class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
SimpleLabeledInstancesImpl(JsonNode) - Constructor for class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
SimpleLabeledInstancesImpl(File) - Constructor for class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
SimpleMLCSplitBasedClassifierEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation
 
SimpleMLCSplitBasedClassifierEvaluator(IMeasure<double[], Double>) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.SimpleMLCSplitBasedClassifierEvaluator
 
SimpleRandomSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
 
SimpleRandomSampling(Random, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.SimpleRandomSampling
 
SimpleRandomSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
SimpleRandomSamplingFactory() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.SimpleRandomSamplingFactory
 
SimpleSLCSplitBasedClassifierEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation
Basic implementation of the AbstractSplitBasedClassifierEvaluator.
SimpleSLCSplitBasedClassifierEvaluator(IMeasure<Double, Double>) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.splitevaluation.SimpleSLCSplitBasedClassifierEvaluator
 
SINGLE_LABEL_METRICS - Static variable in class ai.libs.jaicore.ml.core.evaluation.measure.ClassifierMetricGetter
Available metric for singlelabelclassifiers
SingleRandomSplitClassifierEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
 
SingleRandomSplitClassifierEvaluator(Instances) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.SingleRandomSplitClassifierEvaluator
 
size() - Method in class ai.libs.jaicore.ml.SubInstances
 
skipWithReaderToDatapoints(BufferedReader) - Static method in class ai.libs.jaicore.ml.core.dataset.ArffUtilities
Skips with a given reader all comment lines and the header lines of an ARFF file until the first datapoint is reached.
SOLUTIONLOGDIR - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
sort(String) - Method in class ai.libs.jaicore.ml.core.dataset.sampling.infiles.DatasetFileSorter
 
split(Instances) - Method in interface ai.libs.jaicore.ml.classification.multiclass.reduction.splitters.ISplitter
 
split(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.splitters.RandomSplitter
 
split(Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.splitters.RPNDSplitter
 
split(Collection<String>, Collection<String>, Collection<String>, Instances) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.splitters.RPNDSplitter
 
split(Instances, long, double...) - Method in class ai.libs.jaicore.ml.weka.dataset.splitter.ArbitrarySplitter
 
split(Instances, long, double...) - Method in interface ai.libs.jaicore.ml.weka.dataset.splitter.IDatasetSplitter
 
split(Instances, long, double...) - Method in class ai.libs.jaicore.ml.weka.dataset.splitter.MulticlassClassStratifiedSplitter
 
SplitInstruction - Class in ai.libs.jaicore.ml.cache
Instruction to track a split for a ReproducibleInstances object.
SplitInstruction(String, long, int) - Constructor for class ai.libs.jaicore.ml.cache.SplitInstruction
Constructor to create a split Instruction that can be converted into json.
splitToJsonArray(Collection<Integer>[]) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
StratifiedFileSampling - Class in ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling
 
StratifiedFileSampling(Random, IStratiFileAssigner, File) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.stratified.sampling.StratifiedFileSampling
Constructor for a Stratified File Sampler.
StratifiedSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling
Implementation of Stratified Sampling: Divide dataset into strati and sample from each of these.
StratifiedSampling(IStratiAmountSelector<I>, IStratiAssigner<I>, Random, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.StratifiedSampling
Constructor for Stratified Sampling.
StratifiedSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
StratifiedSamplingFactory(IStratiAmountSelector<I>, IStratiAssigner<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.StratifiedSamplingFactory
 
StratifiedSplit<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.util
 
StratifiedSplit(IDataset<I>, long) - Constructor for class ai.libs.jaicore.ml.core.dataset.util.StratifiedSplit
 
stratify(int) - Method in class ai.libs.jaicore.ml.SubInstances
 
stratStep(int) - Method in class ai.libs.jaicore.ml.SubInstances
 
SubInstances - Class in ai.libs.jaicore.ml
 
SubInstances(Instances, int[]) - Constructor for class ai.libs.jaicore.ml.SubInstances
 
swap(int, int) - Method in class ai.libs.jaicore.ml.SubInstances
 
SystematicFileSampling - Class in ai.libs.jaicore.ml.core.dataset.sampling.infiles
File-level implementation of Systematic Sampling: Sort datapoints and pick every k-th datapoint for the sample.
SystematicFileSampling(Random, File) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.SystematicFileSampling
Simple constructor that uses the default datapoint comparator.
SystematicFileSampling(Random, Comparator<String>, File) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.infiles.SystematicFileSampling
Constructor for a custom datapoint comparator.
SystematicSampling<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
Implementation of Systematic Sampling: Sort datapoints and pick every k-th datapoint for the sample.
SystematicSampling(Random, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.SystematicSampling
Simple constructor that uses the default datapoint comparator.
SystematicSampling(Random, Comparator<I>, IDataset<I>) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.SystematicSampling
Constructor for a custom datapoint comparator.
SystematicSamplingFactory<I extends IInstance> - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories
 
SystematicSamplingFactory() - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.factories.SystematicSamplingFactory
 

T

test - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
TIMEOUT_CANDIDATE - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
TIMEOUT_TOTAL - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
TimeoutableEvaluator - Class in ai.libs.jaicore.ml.evaluation.evaluators.weka
 
TimeoutableEvaluator(IObjectEvaluator<Classifier, Double>, int) - Constructor for class ai.libs.jaicore.ml.evaluation.evaluators.weka.TimeoutableEvaluator
C'tor create a timeoutable evaluator out of any other IObjectEvaluator.
TIMEOUTS_IN_SECONDS - Static variable in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentConfig
 
TMPDIR - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
toJAICoreInstance(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
toJAICoreInstances(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
toJAICoreLabeledInstance(Instance) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
toJAICoreLabeledInstances(Instances) - Static method in class ai.libs.jaicore.ml.WekaUtil
 
toJson() - Method in class ai.libs.jaicore.ml.core.SimpleInstanceImpl
 
toJson() - Method in class ai.libs.jaicore.ml.core.SimpleInstancesImpl
 
toJson() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
toJson() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstancesImpl
 
toJson() - Method in class ai.libs.jaicore.ml.core.WekaCompatibleInstancesImpl
 
toJson() - Method in interface ai.libs.jaicore.ml.interfaces.Instance
 
toJson() - Method in interface ai.libs.jaicore.ml.interfaces.Instances
 
toJson() - Method in interface ai.libs.jaicore.ml.interfaces.LabeledInstances
 
toString() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
toString() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
toString() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
toString() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
toString() - Method in class ai.libs.jaicore.ml.core.dataset.attribute.categorical.CategoricalAttributeType
 
toString() - Method in class ai.libs.jaicore.ml.core.dataset.attribute.primitive.NumericAttributeType
 
toString() - Method in class ai.libs.jaicore.ml.core.dataset.InstanceSchema
 
toString() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.AttributeDiscretizationPolicy
 
toString() - Method in class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.Interval
 
toString() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleDataset
 
toString() - Method in class ai.libs.jaicore.ml.core.dataset.standard.SimpleInstance
 
toString() - Method in class ai.libs.jaicore.ml.core.SimpleLabeledInstanceImpl
 
toString() - Method in class ai.libs.jaicore.ml.experiments.MLExperiment
 
toString() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.client.ExtrapolationRequest
 
toString() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawConfiguration
 
toString() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.ipl.InversePowerLawLearningCurve
 
toString() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationLearningCurveConfiguration
 
toString() - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationParameterSet
 
toString() - Method in class ai.libs.jaicore.ml.metafeatures.GlobalCharacterizer
 
toString() - Method in class ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper
 
toString() - Method in class ai.libs.jaicore.ml.SubInstances
Returns the dataset as a string in ARFF format.
toStringWithOffset() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
toStringWithOffset(String) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNode
 
toStringWithOffset(String) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeLeaf
 
toStringWithOffset() - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
toStringWithOffset(String) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReD
 
toStringWithOffset(String) - Method in class ai.libs.jaicore.ml.classification.multiclass.reduction.MCTreeNodeReDLeaf
 
train(IDataset) - Method in interface ai.libs.jaicore.ml.core.predictivemodel.IBatchLearner
Trains this IBatchLearner using the given IDataset.
train(int[], double[], int, double[][], String) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetClient
 
train - Variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.LearningCurveExtrapolator
 
TRAINING - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
TrainingException - Exception in ai.libs.jaicore.ml.core.exception
The TrainingException indicates that an error occurred during a training process.
TrainingException(String, Throwable) - Constructor for exception ai.libs.jaicore.ml.core.exception.TrainingException
Creates a new TrainingException with the given parameters.
TrainingException(String) - Constructor for exception ai.libs.jaicore.ml.core.exception.TrainingException
Creates a new TrainingException with the given parameters.
trainNet(int[], double[], int, double[][]) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lcnet.LCNetExtrapolationMethod
 
transformAttribute(IAttributeValue<?>) - Method in interface ai.libs.jaicore.ml.core.dataset.attribute.transformer.ISingleAttributeTransformer
 
transformAttribute(IAttributeValue<?>) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue.MinHashingTransformer
 
transformAttribute(IAttributeValue<?>) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.transformer.multivalue.MultiValueBinaryzationTransformer
 
transformAttribute(IAttributeValue<?>) - Method in class ai.libs.jaicore.ml.core.dataset.attribute.transformer.OneHotEncodingTransformer
 
transformWEKAAttributeToAttributeType(Attribute) - Static method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstancesUtil
 

U

UncheckedJaicoreMLException - Exception in ai.libs.jaicore.ml.core.exception
The UncheckedJaicoreMLException serves as a base class for all unchecked Exceptions defined as part of jaicore-ml.
UncheckedJaicoreMLException(String, Throwable) - Constructor for exception ai.libs.jaicore.ml.core.exception.UncheckedJaicoreMLException
Creates a new UncheckedJaicoreMLException with the given parameters.
UncheckedJaicoreMLException(String) - Constructor for exception ai.libs.jaicore.ml.core.exception.UncheckedJaicoreMLException
Creates a new UncheckedJaicoreMLException with the given parameters.
update(Set<IInstance>) - Method in interface ai.libs.jaicore.ml.core.predictivemodel.IOnlineLearner
Updates this IOnlineLearner based on the given Set of IInstances.
update(IInstance) - Method in interface ai.libs.jaicore.ml.core.predictivemodel.IOnlineLearner
Updates this IOnlineLearner based on the given IInstance.
updateBestScore(Double) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.ProbabilisticMonteCarloCrossValidationEvaluator
 
updateExperiment(MLExperiment, Map<String, String>) - Method in interface ai.libs.jaicore.ml.experiments.IMultiClassClassificationExperimentDatabase
 
updateExperiment(MLExperiment, Map<String, String>) - Method in class ai.libs.jaicore.ml.experiments.MySQLExperimentDatabaseHandle
 
useFilterOnSingleInstance(Instance, Filter) - Static method in class ai.libs.jaicore.ml.WekaUtil
 

V

VALIDATION - Static variable in interface ai.libs.jaicore.ml.experiments.IPipelineEvaluationConf
 
value(double) - Method in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationFunction
 
valueOf(String) - Static method in enum ai.libs.jaicore.ml.cache.DataProvider
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum ai.libs.jaicore.ml.classification.multiclass.reduction.EMCNodeType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper.DiscretizationStrategy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum ai.libs.jaicore.ml.core.evaluation.measure.multilabel.EMultilabelPerformanceMeasure
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.EMulticlassMeasure
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.EMultiClassPerformanceMeasure
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper.ProblemType
Returns the enum constant of this type with the specified name.
values() - Static method in enum ai.libs.jaicore.ml.cache.DataProvider
Returns an array containing the constants of this enum type, inthe order they are declared.
values() - Static method in enum ai.libs.jaicore.ml.classification.multiclass.reduction.EMCNodeType
Returns an array containing the constants of this enum type, inthe order they are declared.
values() - Static method in enum ai.libs.jaicore.ml.core.dataset.sampling.inmemory.stratified.sampling.DiscretizationHelper.DiscretizationStrategy
Returns an array containing the constants of this enum type, inthe order they are declared.
values() - Static method in enum ai.libs.jaicore.ml.core.evaluation.measure.multilabel.EMultilabelPerformanceMeasure
Returns an array containing the constants of this enum type, inthe order they are declared.
values() - Static method in enum ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.EMulticlassMeasure
Returns an array containing the constants of this enum type, inthe order they are declared.
values() - Static method in enum ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.EMultiClassPerformanceMeasure
Returns an array containing the constants of this enum type, inthe order they are declared.
values() - Static method in enum ai.libs.jaicore.ml.scikitwrapper.ScikitLearnWrapper.ProblemType
Returns an array containing the constants of this enum type, inthe order they are declared.
VAPOR_PRESSURE - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
verbose - Variable in class ai.libs.jaicore.ml.scikitwrapper.DefaultProcessListener
Flag whether standard outputs are forwarded to the logger.

W

WaitForSamplingStepEvent - Class in ai.libs.jaicore.ml.core.dataset.sampling.inmemory
 
WaitForSamplingStepEvent(String) - Constructor for class ai.libs.jaicore.ml.core.dataset.sampling.inmemory.WaitForSamplingStepEvent
 
WEIBULL - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 
WekaCompatibleInstancesImpl - Class in ai.libs.jaicore.ml.core
 
WekaCompatibleInstancesImpl(List<String>) - Constructor for class ai.libs.jaicore.ml.core.WekaCompatibleInstancesImpl
 
WekaCompatibleInstancesImpl(String) - Constructor for class ai.libs.jaicore.ml.core.WekaCompatibleInstancesImpl
 
WekaCompatibleInstancesImpl(JsonNode) - Constructor for class ai.libs.jaicore.ml.core.WekaCompatibleInstancesImpl
 
WekaCompatibleInstancesImpl(File) - Constructor for class ai.libs.jaicore.ml.core.WekaCompatibleInstancesImpl
 
WekaInstance - Class in ai.libs.jaicore.ml.core.dataset.weka
 
WekaInstance(Instance) - Constructor for class ai.libs.jaicore.ml.core.dataset.weka.WekaInstance
 
WekaInstances - Class in ai.libs.jaicore.ml.core.dataset.weka
 
WekaInstances(Instances) - Constructor for class ai.libs.jaicore.ml.core.dataset.weka.WekaInstances
 
WekaInstancesFeatureUnion - Class in ai.libs.jaicore.ml.core
 
WekaInstancesFeatureUnion() - Constructor for class ai.libs.jaicore.ml.core.WekaInstancesFeatureUnion
 
wekaInstancesToDataset(Instances) - Static method in class ai.libs.jaicore.ml.core.dataset.weka.WekaInstancesUtil
 
WekaInstancesUtil - Class in ai.libs.jaicore.ml.core.dataset.weka
 
WekaUtil - Class in ai.libs.jaicore.ml
 
WekaUtil() - Constructor for class ai.libs.jaicore.ml.WekaUtil
 
withData(Instances) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
withDatasetSplitter(IDatasetSplitter) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
withNumMCIterations(int) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
withSeed(int) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
withSplitBasedEvaluator(ISplitBasedClassifierEvaluator<Double>) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
withTimeoutForSolutionEvaluation(int) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 
withTrainFoldSize(double) - Method in class ai.libs.jaicore.ml.evaluation.evaluators.weka.factory.MonteCarloCrossValidationEvaluatorFactory
 

Y

Y - Static variable in class ai.libs.jaicore.ml.learningcurve.extrapolation.lc.LinearCombinationConstants
 

Z

ZeroOneLoss - Class in ai.libs.jaicore.ml.core.evaluation.measure.singlelabel
 
ZeroOneLoss() - Constructor for class ai.libs.jaicore.ml.core.evaluation.measure.singlelabel.ZeroOneLoss
 
A B C D E F G H I J K L M N O P R S T U V W Y Z 


NOTHING
NOTHING
Add the Maven Dependecy to your project: maven dependecy for com.amazonaws : aws-java-sdk : 1.3.14