See: Description
Class | Description |
---|---|
DomainMapConstructor | Create map from input variable domain information. |
EasyPredictModelWrapper | An easy-to-use prediction wrapper for generated models. |
EasyPredictModelWrapper.Config | Configuration builder for instantiating a Wrapper. |
EasyPredictModelWrapper.ErrorConsumer | Observer interface with methods corresponding to errors during the prediction. |
RowData | Column name to column value mapping for a new row (aka data point, observation, sample) to predict. |
RowToRawDataConverter | This class is intended to transform a RowData instance - for which we want to get prediction to - into a raw array |
// Step 1. modelClassName = "your_pojo_model_downloaded_from_h2o"; GenModel rawModel; rawModel = (GenModel) Class.forName(modelClassName).newInstance(); EasyPredictModelWrapper model = new EasyPredictModelWrapper(rawModel); // // By default, unknown categorical levels throw PredictUnknownCategoricalLevelException. // Optionally configure the wrapper to treat unknown categorical levels as N/A instead: // // EasyPredictModelWrapper model = new EasyPredictModelWrapper( // new EasyPredictModelWrapper.Config() // .setModel(rawModel) // .setConvertUnknownCategoricalLevelsToNa(true)); // Step 2. RowData row = new RowData(); row.put(new String("CategoricalColumnName"), new String("LevelName")); row.put(new String("NumericColumnName1"), new String("42.0")); row.put(new String("NumericColumnName2"), new Double(42.0)); // Step 3. BinomialModelPrediction p = model.predictBinomial(row);